1
|
Aktar MS, de Serrano V, Ghiladi RA, Franzen S. Structural Comparison of Substrate Binding Sites in Dehaloperoxidase A and B. Biochemistry 2024; 63:1761-1773. [PMID: 38959050 DOI: 10.1021/acs.biochem.4c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Dehalperoxidase (DHP) has diverse catalytic activities depending on the substrate binding conformation, pH, and dynamics in the distal pocket above the heme. According to our hypothesis, the molecular structure of the substrate and binding orientation in DHP guide enzymatic function. Enzyme kinetic studies have shown that the catalytic activity of DHP B is significantly higher than that of DHP A despite 96% sequence homology. There are more than 30 substrate-bound structures with DHP B, each providing insight into the nature of enzymatic binding at the active site. By contrast, the only X-ray crystallographic structures of small molecules in a complex with DHP A are phenols. This study is focused on investigating substrate binding in DHP A to compare with DHP B structures. Fifteen substrates were selected that were known to bind to DHP B in the crystal to test whether soaking substrates into DHP A would yield similar structures. Five of these substrates yielded X-ray crystal structures of substrate-bound DHP A, namely, 2,4-dichlorophenol (1.48 Å, PDB: 8EJN), 2,4-dibromophenol (1.52 Å, PDB: 8VSK), 4-nitrophenol (2.03 Å, PDB: 8VKC), 4-nitrocatechol (1.40 Å, PDB: 8VKD), and 4-bromo-o-cresol (1.64 Å, PDB: 8VZR). For the remaining substrates that bind to DHP B, such as cresols, 5-bromoindole, benzimidazole, 4,4-biphenol, 4.4-ethylidenebisphenol, 2,4-dimethoxyphenol, and guaiacol, the electron density maps in DHP A are not sufficient to determine the presence of the substrates, much less their orientation. In our hands, only phenols, 4-Br-o-cresol, and 4-nitrocatechol can be soaked into crystalline DHP A. None of the larger substrates were observed to bind. A minimum of seven hanging drops were selected for soaking with more than 50 crystals screened for each substrate. The five high-quality examples of direct comparison of modes of binding in DHP A and B for the same substrate provide further support for the hypothesis that the substrate-binding conformation determines the enzyme function of DHP.
Collapse
Affiliation(s)
- Mst Sharmin Aktar
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
González-Delgado JM, Thompson PM, Andrałojć W, Gdaniec Z, Ghiladi RA, Franzen S. Comparison of the Backbone Dynamics of Dehaloperoxidase-Hemoglobin Isoenzymes. J Phys Chem B 2024; 128:3383-3397. [PMID: 38563384 DOI: 10.1021/acs.jpcb.3c07176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Dehaloperoxidase (DHP) is a multifunctional hemeprotein with a functional switch generally regulated by the chemical class of the substrate. Its two isoforms, DHP-A and DHP-B, differ by only five amino acids and have an almost identical protein fold. However, the catalytic efficiency of DHP-B for oxidation by a peroxidase mechanism ranges from 2- to 6-fold greater than that of DHP-A depending on the conditions. X-ray crystallography has shown that many substrates and ligands have nearly identical binding in the two isoenzymes, suggesting that the difference in catalytic efficiency could be due to differences in the conformational dynamics. We compared the backbone dynamics of the DHP isoenzymes at pH 7 through heteronuclear relaxation dynamics at 11.75, 16.45, and 19.97 T in combination with four 300 ns MD simulations. While the overall dynamics of the isoenzymes are similar, there are specific local differences in functional regions of each protein. In DHP-A, Phe35 undergoes a slow chemical exchange between two conformational states likely coupled to a swinging motion of Tyr34. Moreover, Asn37 undergoes fast chemical exchange in DHP-A. Given that Phe35 and Asn37 are adjacent to Tyr34 and Tyr38, it is possible that their dynamics modulate the formation and migration of the active tyrosyl radicals in DHP-A at pH 7. Another significant difference is that both distal and proximal histidines have a 15-18% smaller S2 value in DHP-B, thus their greater flexibility could account for the higher catalytic activity. The distal histidine grants substrate access to the distal pocket. The greater flexibility of the proximal histidine could also accelerate H2O2 activation at the heme Fe by increased coupling of an amino acid charge relay to stabilize the ferryl Fe(IV) oxidation state in a Poulos-Kraut "push-pull"-type peroxidase mechanism.
Collapse
Affiliation(s)
| | - Peter M Thompson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Moreno-Chicano T, Carey LM, Axford D, Beale JH, Doak RB, Duyvesteyn HME, Ebrahim A, Henning RW, Monteiro DCF, Myles DA, Owada S, Sherrell DA, Straw ML, Šrajer V, Sugimoto H, Tono K, Tosha T, Tews I, Trebbin M, Strange RW, Weiss KL, Worrall JAR, Meilleur F, Owen RL, Ghiladi RA, Hough MA. Complementarity of neutron, XFEL and synchrotron crystallography for defining the structures of metalloenzymes at room temperature. IUCRJ 2022; 9:610-624. [PMID: 36071813 PMCID: PMC9438502 DOI: 10.1107/s2052252522006418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Room-temperature macromolecular crystallography allows protein structures to be determined under close-to-physiological conditions, permits dynamic freedom in protein motions and enables time-resolved studies. In the case of metalloenzymes that are highly sensitive to radiation damage, such room-temperature experiments can present challenges, including increased rates of X-ray reduction of metal centres and site-specific radiation-damage artefacts, as well as in devising appropriate sample-delivery and data-collection methods. It can also be problematic to compare structures measured using different crystal sizes and light sources. In this study, structures of a multifunctional globin, dehaloperoxidase B (DHP-B), obtained using several methods of room-temperature crystallographic structure determination are described and compared. Here, data were measured from large single crystals and multiple microcrystals using neutrons, X-ray free-electron laser pulses, monochromatic synchrotron radiation and polychromatic (Laue) radiation light sources. These approaches span a range of 18 orders of magnitude in measurement time per diffraction pattern and four orders of magnitude in crystal volume. The first room-temperature neutron structures of DHP-B are also presented, allowing the explicit identification of the hydrogen positions. The neutron data proved to be complementary to the serial femtosecond crystallography data, with both methods providing structures free of the effects of X-ray radiation damage when compared with standard cryo-crystallography. Comparison of these room-temperature methods demonstrated the large differences in sample requirements, data-collection time and the potential for radiation damage between them. With regard to the structure and function of DHP-B, despite the results being partly limited by differences in the underlying structures, new information was gained on the protonation states of active-site residues which may guide future studies of DHP-B.
Collapse
Affiliation(s)
- Tadeo Moreno-Chicano
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Leiah M. Carey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - John H. Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - R. Bruce Doak
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology (STRUBI), University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Ali Ebrahim
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Robert W. Henning
- BioCARS, University of Chicago, Building 434B, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Diana C. F. Monteiro
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203-1102, USA
| | - Dean A. Myles
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Darren A. Sherrell
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Megan L. Straw
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Vukica Šrajer
- BioCARS, University of Chicago, Building 434B, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | | | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Ivo Tews
- Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Martin Trebbin
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203-1102, USA
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Richard W. Strange
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Kevin L. Weiss
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jonathan A. R. Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Flora Meilleur
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Michael A. Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
4
|
Thompson MK, Shay MR, de Serrano V, Dumarieh R, Ghiladi RA, Franzen S. A new inhibition mechanism in the multifunctional catalytic hemoglobin dehaloperoxidase as revealed by the DHP A(V59W) mutant: A spectroscopic and crystallographic study. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As multifunctional catalytic hemoglobins, dehaloperoxidase isoenzymes A and B (DHP A and B) are among the most versatile hemoproteins in terms of activities displayed. The ability of DHP to bind over twenty different substrates in the distal pocket might appear to resemble the promiscuousness of monooxygenase enzymes, yet there are identifiable substrate-specific interactions that can steer the type of oxidation (O-atom vs. electron transfer) that occurs inside the DHP distal pocket. Here, we have investigated the DHP A(V59W) mutant in order to probe the limits of conformational flexibility in the distal pocket as it relates to the genesis of this substrate-dependent activity differentiation. The X-ray crystal structure of the metaquo DHP A(V59W) mutant (PDB 3K3U) and the V59W mutant in complex with fluoride [denoted as DHP A(V59W-F)] (PDB 7MNH) show significant mobility of the tryptophan in the distal pocket, with two parallel conformations having W59-N[Formula: see text] H-bonded to a heme-bound ligand (H2O or F[Formula: see text], and another conformation [observed only in DHP A(V59W-F)] that brings W59 sufficiently close to the heme as to preclude axial ligand binding. UV-vis and resonance Raman spectroscopic studies show that DHP A(V59W) is 5-coordinate high spin (5cHS) at pH 5 and 6-coordinate high spin (6cHS) at pH 7, whereas DHP A(V59W-F) is 6cHS from pH 5 to 7. Enzyme assays confirm robust peroxidase activity at pH 5, but complete loss of activity at pH 7. We find no evidence that tryptophan plays a role in the oxidation mechanism ([Formula: see text]. radical formation). Instead, the data reveal a new mechanism of DHP inhibition, namely a shift towards a non-reactive form by OH[Formula: see text] ligation to the heme-Fe that is strongly stabilized (presumably through H-bonding interactions) by the presence of W59 in the distal cavity.
Collapse
Affiliation(s)
- Matthew K. Thompson
- Department of Chemistry & Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Madeline R. Shay
- Department of Chemistry & Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Rania Dumarieh
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Dynamics of dehaloperoxidase-hemoglobin A derived from NMR relaxation spectroscopy and molecular dynamics simulation. J Inorg Biochem 2018; 181:65-73. [DOI: 10.1016/j.jinorgbio.2018.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/11/2017] [Accepted: 01/07/2018] [Indexed: 11/18/2022]
|
6
|
Carey LM, Gavenko R, Svistunenko DA, Ghiladi RA. How nature tunes isoenzyme activity in the multifunctional catalytic globin dehaloperoxidase from Amphitrite ornata. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:230-241. [DOI: 10.1016/j.bbapap.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 01/29/2023]
|
7
|
Selective tuning of activity in a multifunctional enzyme as revealed in the F21W mutant of dehaloperoxidase B from Amphitrite ornata. J Biol Inorg Chem 2017; 23:209-219. [DOI: 10.1007/s00775-017-1520-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/17/2017] [Indexed: 11/25/2022]
|
8
|
Le P, Zhao J, Franzen S. Correlation of Heme Binding Affinity and Enzyme Kinetics of Dehaloperoxidase. Biochemistry 2014; 53:6863-77. [DOI: 10.1021/bi5005975] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Le
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jing Zhao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
9
|
Zhao J, de Serrano V, Franzen S. A model for the flexibility of the distal histidine in dehaloperoxidase-hemoglobin A based on X-ray crystal structures of the carbon monoxide adduct. Biochemistry 2014; 53:2474-82. [PMID: 24670063 PMCID: PMC4203366 DOI: 10.1021/bi5001905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Dehaloperoxidase
hemoglobin A (DHP A) is a multifunctional hemoglobin
that appears to have evolved oxidative pathways for the degradation
of xenobiotics as a protective function that complements the oxygen
transport function. DHP A possesses at least two internal binding
sites, one for substrates and one for inhibitors, which include various
halogenated phenols and indoles. Herein, we report the X-ray crystallographic
structure of the carbonmonoxy complex (DHPCO). Unlike other DHP structures
with 6-coordinated heme, the conformation of the distal histidine
(H55) in DHPCO is primarily external or solvent exposed, despite the
fact that the heme Fe is 6-coordinated. As observed generally in globins,
DHP exhibits two distal histidine conformations (one internal and
one external). In previous structural studies, we have shown that
the distribution of H55 conformations is weighted strongly toward
the external position when the DHP heme Fe is 5-coordinated. The large
population of the external conformation of the distal histidine observed
in DHPCO crystals at pH 6.0 indicates that some structural factor
in DHP must account for the difference from other globins, which exhibit
a significant external conformation only when pH < 4.5. While the
original hypothesis suggested that interaction with a heme-Fe-bound
ligand was the determinant of H55 conformation, the current study
forces a refinement of that hypothesis. The external or open conformation
of H55 is observed to have interactions with two propionate groups
in heme, at distances of 3.82 and 2.73 Å, respectively. A relatively
weak hydrogen bonding interaction between H55 and CO, combined with
strong interactions with heme propionate (position 6), is hypothesized
to strengthen the external conformation of H55. Density function theory
(DFT) calculations were conducted to test whether there is a weaker
hydrogen bond interaction between H55 and heme bonded CO or O2. Molecular dynamics simulations were conducted to examine
how the tautomeric forms of H55 affect the dynamic motions of the
distal histidine that govern the switching between open and closed
conformations. The calculations support the modified hypothesis suggesting
a competition between the strength of interactions with heme ligand
and the heme propionates as the factors that determine the conformation
of the distal histidine.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
10
|
Sun S, Sono M, Wang C, Du J, Lebioda L, Dawson JH. Influence of heme environment structure on dioxygen affinity for the dual function Amphitrite ornata hemoglobin/dehaloperoxidase. Insights into the evolutional structure-function adaptations. Arch Biochem Biophys 2014; 545:108-15. [PMID: 24440609 DOI: 10.1016/j.abb.2014.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 11/28/2022]
Abstract
Sea worm, Amphitrite ornata, has evolved its globin (an O(2) carrier) also to serves as a dehaloperoxidase (DHP) to detoxify haloaromatic pollutants generated by competing species. A previous mutagenesis study by our groups on both DHP and sperm whale myoglobin (SW Mb) revealed some structural factors that influence the dehaloperoxidase activities (significantly lower for Mb) of both proteins. Using an isocyanide/O(2) partition constant measurement method in this study, we have examined the effects of these structural factors on the O(2) equilibrium constants (KO2) of DHP, SW Mb, and their mutants. A clear trend of decreasing O(2) affinity and increasing catalytic activity along with the increase in the distal His N(ε)-heme iron distance is observed. An H93K/T95H Mb double mutant mimicking the DHP proximal His positioning exhibited markedly enhanced O(2) affinity, confirming the essential effect of proximal His rotation on the globin function of DHP. For DHP, the L100F, T56G and M86E variants showed the effects of distal volume, distal His flexibility and proximal electronic push, respectively, on the O(2) affinity. This study provides insights into how DHP has evolved its heme environment to gain significantly enhanced peroxidase capability without compromising its primary function as an O(2) carrier.
Collapse
Affiliation(s)
- Shengfang Sun
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Masanori Sono
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States.
| | - Chunxue Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Jing Du
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Lukasz Lebioda
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States.
| | - John H Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States; School of Medicine, University of South Carolina, United States.
| |
Collapse
|