1
|
Zhang Z, Long M, Zheng N, Deng Y, Wang Q, Osire T, Xia X. Redesign of γ-glutamyl transpeptidase from Bacillus subtilis for high-level production of L-theanine by cavity topology engineering. Appl Microbiol Biotechnol 2023; 107:3551-3564. [PMID: 37099056 DOI: 10.1007/s00253-023-12544-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/27/2023]
Abstract
L-Theanine is a multifunctional nonprotein amino acid found naturally in tea leaves. It has been developed as a commercial product for a wide range of applications in the food, pharmaceutical, and healthcare industries. However, L-theanine production catalyzed by γ-glutamyl transpeptidase (GGT) is limited by the low catalytic efficiency and specificity of this class of enzymes. Here, we developed a strategy for cavity topology engineering (CTE) based on the cavity geometry of GGT from B. subtilis 168 (CGMCC 1.1390) to obtain an enzyme with high catalytic activity and applied it to the synthesis of L-theanine. Three potential mutation sites, M97, Y418, and V555, were identified using the internal cavity as a probe, and residues G, A, V, F, Y, and Q, which may affect the shape of the cavity, were obtained directly by computer statistical analysis without energy calculations. Finally, 35 mutants were obtained. The optimal mutant Y418F/M97Q showed a 4.8-fold improvement in catalytic activity and a 25.6-fold increase in catalytic efficiency. The recombinant enzyme Y418F/M97Q exhibited a high space-time productivity of 15.4 g L-1 h-1 by whole-cell synthesis in a 5 L bioreactor, which was one of the highest concentrations reported so far at 92.4 g L-1. Overall, this strategy is expected to enhance the enzymatic activity associated with the synthesis of L-theanine and its derivatives.Key points • Cavity topology engineering was used to modify the GGT for L-theanine biocatalysis. • The catalytic efficiency of GGT was increased by 25.6-fold. • Highest productivity of L-theanine reached 15.4 g L -1 h-1 (92.4 g L-1) in a 5 L bioreactor.
Collapse
Affiliation(s)
- Zehua Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Mengfei Long
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Nan Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yu Deng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qiong Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Tolbert Osire
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, Guangdong, China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
2
|
Chi MC, Lu BY, Huang YF, Wang SW, Lin MG, Wang TF. Effects of Sodium Dodecyl Sulfate on the Enzyme Catalysis and Conformation of a Recombinant γ-Glutamyltranspeptidase from Bacillus licheniformis. Protein J 2023; 42:64-77. [PMID: 36739340 DOI: 10.1007/s10930-023-10095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/06/2023]
Abstract
The study of interactions between proteins and surfactants is of relevance in a diverse range of applications including food, enzymatic detergent formulation, and drug delivery. In spite of sodium dodecyl sulfate (SDS)-induced unfolding has been studied in detail at the protein level, deciphering the conformation-activity relationship of a recombinant γ-glutamyltranspeptidase (BlrGGT) from Bacillus licheniformis remains important to understand how the transpeptidase activity is related to its conformation. In this study, we examined the enzyme catalysis and conformational transition of BlrGGT in the presence of SDS. Enzymatic assays showed that the transpeptidase activity of BlrGGT was greatly affected by SDS in a concentration-dependent manner with approximately 90% inactivation at 6 mM. Native polyacrylamide gel electrophoresis of SDS-treated samples clearly revealed that the heterodimeric enzyme was apparently dissociated into two different subunits at concentrations above 2 mM. The study of enzyme kinetics showed that SDS can act as a mixed-type inhibitor to reduce the catalytic efficiency of BlrGGT. Moreover, the t1/2 value of the enzyme at 55 °C was greatly reduced from 495.1 min to 7.4 min in the presence of 1 mM SDS. The I3/I1 ratio of pyrene excimer fluorescence emission changed around 3.7 mM SDS in the absence of BlrGGT and the inflection point of enzyme samples was reduced to less than 2.7 mM. The Far-UV CD spectrum of the native enzyme had two negative peaks at 208 and 222 nm, respectively; however, both negative peaks increased in magnitude with increasing SDS concentration and reached maximal values at above 4.0 mM. The intrinsic fluorescence spectra of tryptophan further demonstrated that the SDS-induced enzyme conformational transition occurred at approximately 5.1 mM. Tween 20 significantly suppressed the interaction of BlrGGT with SDS by forming mixed micelles at a molar ratio of 1.0. Taken together, this study definitely promotes our better understanding of the relationship between the conformation and catalysis of BlrGGT.
Collapse
Affiliation(s)
- Meng-Chun Chi
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan
| | - Bo-Yuan Lu
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan
| | - Yu-Fen Huang
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan
| | - Shih-Wei Wang
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan
| | - Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Nangang District, Taipei City, 11529, Taiwan
| | - Tzu-Fan Wang
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan.
| |
Collapse
|
3
|
Lin LL, Lu BY, Chi MC, Huang YF, Lin MG, Wang TF. Activation and thermal stabilization of a recombinant γ-glutamyltranspeptidase from Bacillus licheniformis ATCC 27811 by monovalent cations. Appl Microbiol Biotechnol 2022; 106:1991-2006. [PMID: 35230495 DOI: 10.1007/s00253-022-11836-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/27/2022]
Abstract
The regulation of enzyme activity through complexation with certain metal ions plays an important role in many biological processes. In addition to divalent metals, monovalent cations (MVCs) frequently function as promoters for efficient biocatalysis. Here, we examined the effect of MVCs on the enzymatic catalysis of a recombinant γ-glutamyltranspeptidase (BlrGGT) from Bacillus licheniformis ATCC 27,811 and the application of a metal-activated enzyme to L-theanine synthesis. The transpeptidase activity of BlrGGT was enhanced by Cs+ and Na+ over a broad range of concentrations with a maximum of 200 mM. The activation was essentially independent of the ionic radius, but K+ contributed the least to enhancing the catalytic efficiency. The secondary structure of BlrGGT remained mostly unchanged in the presence of different concentrations of MVCs, but there was a significant change in its tertiary structure under the same conditions. Compared with the control, the half-life (t1/2) of the Cs+-enriched enzyme at 60 and 65 °C was shown to increase from 16.3 and 4.0 min to 74.5 and 14.3 min, respectively. The simultaneous addition of Cs+ and Mg2+ ions exerted a synergistic effect on the activation of BlrGGT. This was adequately reflected by an improvement in the conversion of substrates to L-theanine by 3.3-15.1% upon the addition of 200 mM MgCl2 into a reaction mixture comprising the freshly desalted enzyme (25 μg/mL), 250 mM L-glutamine, 600 mM ethylamine, 200 mM each of the MVCs, and 50 mM borate buffer (pH 10.5). Taken together, our results provide interesting insights into the complexation of MVCs with BlrGGT and can therefore be potentially useful to the biocatalytic production of naturally occurring γ-glutamyl compounds. KEY POINTS: • The transpeptidase activity of B. licheniformis γ-glutamyltranspeptidase can be activated by monovalent cations. • The thermal stability of the enzyme was profoundly increased in the presence of 200 mM Cs+. • The simultaneous addition of Cs+and Mg2+ions to the reaction mixture improves L-theanine production.
Collapse
Affiliation(s)
- Long-Liu Lin
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan
| | - Bo-Yuan Lu
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan
| | - Meng-Chun Chi
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan
| | - Yu-Fen Huang
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan
| | - Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Nangang District, Taipei City, 11529, Taiwan
| | - Tzu-Fan Wang
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan.
| |
Collapse
|
4
|
Sharma E, Lal MK, Gulati A, Gulati A. Heterologous expression, on-column refolding and characterization of gamma-glutamyl transpeptidase gene from Bacillus altitudinis IHB B1644: A microbial bioresource from Western Himalayas. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Saini M, Kalra S, Kaushik JK, Gupta R. Functional characterization of the extra sequence in the large subunit of γ-glutamyl transpeptidase from Bacillus atrophaeus: Role in autoprocessing and activity. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Saini M, Kashyap A, Bindal S, Saini K, Gupta R. Bacterial Gamma-Glutamyl Transpeptidase, an Emerging Biocatalyst: Insights Into Structure-Function Relationship and Its Biotechnological Applications. Front Microbiol 2021; 12:641251. [PMID: 33897647 PMCID: PMC8062742 DOI: 10.3389/fmicb.2021.641251] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Gamma-glutamyl transpeptidase (GGT) enzyme is ubiquitously present in all life forms and plays a variety of roles in diverse organisms. Higher eukaryotes mainly utilize GGT for glutathione degradation, and mammalian GGTs have implications in many physiological disorders also. GGTs from unicellular prokaryotes serve different physiological functions in Gram-positive and Gram-negative bacteria. In the present review, the physiological significance of bacterial GGTs has been discussed categorizing GGTs from Gram-negative bacteria like Escherichia coli as glutathione degraders and from pathogenic species like Helicobacter pylori as virulence factors. Gram-positive bacilli, however, are considered separately as poly-γ-glutamic acid (PGA) degraders. The structure-function relationship of the GGT is also discussed mainly focusing on the crystallization of bacterial GGTs along with functional characterization of conserved regions by site-directed mutagenesis that unravels molecular aspects of autoprocessing and catalysis. Only a few crystal structures have been deciphered so far. Further, different reports on heterologous expression of bacterial GGTs in E. coli and Bacillus subtilis as hosts have been presented in a table pointing toward the lack of fermentation studies for large-scale production. Physicochemical properties of bacterial GGTs have also been described, followed by a detailed discussion on various applications of bacterial GGTs in different biotechnological sectors. This review emphasizes the potential of bacterial GGTs as an industrial biocatalyst relevant to the current switch toward green chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
7
|
Enzymatic synthesis of L-theanine from L-glutamine and ethylamine by Bacillus licheniformis γ-glutamyltranspeptidase and its mutants specialized in transpeptidase activity. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Mutational Analysis of a Highly Conserved PLSSMXP Sequence in the Small Subunit of Bacillus licheniformis γ-Glutamyltranspeptidase. Biomolecules 2019; 9:biom9090508. [PMID: 31546955 PMCID: PMC6769717 DOI: 10.3390/biom9090508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/13/2023] Open
Abstract
A highly conserved 458PLSSMXP464 sequence in the small subunit (S-subunit) of an industrially important Bacillus licheniformis γ-glutamyltranspeptidase (BlGGT) was identified by sequence alignment. Molecular structures of the precursor mimic and the mature form of BlGGT clearly reveal that this peptide sequence is in close spatial proximity to the self-processing and catalytic sites of the enzyme. To probe the role of this conserved sequence, ten mutant enzymes of BlGGT were created through a series of deletion and alanine-scanning mutagenesis. SDS-PAGE and densitometric analyses showed that the intrinsic ability of BlGGT to undergo autocatalytic processing was detrimentally affected by the deletion-associated mutations. However, loss of self-activating capacity was not obviously observed in most of the Ala-replacement mutants. The Ala-replacement mutants had a specific activity comparable to or greater than that of the wild-type enzyme; conversely, all deletion mutants completely lost their enzymatic activity. As compared with BlGGT, S460A and S461S showed greatly enhanced kcat/Km values by 2.73- and 2.67-fold, respectively. The intrinsic tryptophan fluorescence and circular dichroism spectral profiles of Ala-replacement and deletion mutants were typically similar to those of BlGGT. However, heat and guanidine hydrochloride-induced unfolding transitions of the deletion-associated mutant proteins were severely reduced as compared with the wild-type enzyme. The predictive mutant models suggest that the microenvironments required for both self-activation and catalytic reaction of BlGGT can be altered upon mutations.
Collapse
|
9
|
Massone M, Calvio C, Rabuffetti M, Speranza G, Morelli CF. Effect of the inserted active-site-covering lid loop on the catalytic activity of a mutant B. subtilis γ-glutamyltransferase (GGT). RSC Adv 2019; 9:34699-34709. [PMID: 35530678 PMCID: PMC9073855 DOI: 10.1039/c9ra05941e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/11/2019] [Indexed: 11/24/2022] Open
Abstract
γ-Glutamylpeptides are compounds derived from the acylation of an amino acid or a short peptide by the γ-carboxyl carbon of the side chain of glutamic acid. Due to their altered chemico-physical and organoleptic properties, they may be interesting substitutes or precursors of parent compounds used in pharmaceutical, dietetic and cosmetic formulations. Some of them are naturally occurring flavor enhancers or are endowed with biological activities. Enzymatic approaches to the synthesis of γ-glutamyl derivatives based on the use of γ-glutamyltransferases (GGTs, EC 2.3.2.2) have been proposed, which should be able to alleviate the problems connected with the troublesome and low-yielding extraction from natural sources or the non-economical chemical synthesis, which requires protection/deprotection steps. With the aim of overcoming the current limitations in the use of GGTs as biocatalysts, a mutant GGT was investigated. The mutant GGT was obtained by inserting the active-site-covering lid loop of the E. coli GGT onto the structure of B. subtilis GGT. With respect to the wild-type enzyme, the mutant showed a more demanding substrate specificity and a low hydrolase activity. These results represent an attempt to correlate the structural features of a GGT to its different activities. However, the ability of the mutant enzyme to catalyze the subsequent addition of several γ-glutamyl units, inherited by the parent B. subtilis GGT, still represents a limitation to its full application as a biocatalyst for preparative purposes. A mutant γ-glutamyltransferase with improve transpeptidase activity was obtained by inserting the active site-covering lid loop on an enzyme naturally lacking it.![]()
Collapse
Affiliation(s)
- Michela Massone
- Department of Chemistry
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Cinzia Calvio
- Department of Biology and Biotechnology
- Università degli Studi di Pavia
- 27100 Pavia
- Italy
| | - Marco Rabuffetti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Giovanna Speranza
- Department of Chemistry
- Università degli Studi di Milano
- 20133 Milano
- Italy
- Istituto di Scienze e Tecnologie Molecolari (INSTM)
| | - Carlo F. Morelli
- Department of Chemistry
- Università degli Studi di Milano
- 20133 Milano
- Italy
| |
Collapse
|
10
|
Lee YC, Chi MC, Lin MG, Chen YY, Lin LL, Wang TF. Biocatalytic Synthesis of γ-glutamyl-L-leucine, a Kokumi-Imparting Dipeptide, byBacillus licheniformisγ-Glutamyltranspeptidase. FOOD BIOTECHNOL 2018. [DOI: 10.1080/08905436.2018.1444636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yen-Chung Lee
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| | - Meng-Chun Chi
- Department of Applied Chemistry, National Chiayi University, Chiayi City, Taiwan
| | - Min-Guan Lin
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Yi-Yu Chen
- Department of Applied Chemistry, National Chiayi University, Chiayi City, Taiwan
| | - Long-Liu Lin
- Department of Applied Chemistry, National Chiayi University, Chiayi City, Taiwan
| | - Tzu-Fan Wang
- Department of Applied Chemistry, National Chiayi University, Chiayi City, Taiwan
| |
Collapse
|
11
|
Functional role of the conserved glycine residues, Gly481 and Gly482, of the γ-glutamyltranspeptidase from Bacillus licheniformis. Int J Biol Macromol 2017; 109:1182-1188. [PMID: 29162462 DOI: 10.1016/j.ijbiomac.2017.11.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 01/17/2023]
Abstract
Six mutants bearing single amino acid substitutions in the small subunit of Bacillus licheniformis γ-glutamyltranspeptudase (BlGGT) have been constructed by site-directed mutagenesis. The resultant enzymes were overexpressed in Escherichia coli and purified by affinity chromatography for biochemical and biophysical characterizations. Replacing Gly481 by either Ala or Glu did affect both autocatalytic processing and catalytic activity of the enzyme, but the substitution of this residue to arginine resulted in an unprocessed enzyme with insignificant catalytic activity. The replacement of another conserved glycine residue, Gly482, by either Ala or Glu caused a significant change in the functional integrity of the enzyme. Moreover, the mutation of Gly482 to arginine led to a marked reduction in the autocatalytic processing. Structural analyses revealed that the fluorescence and circular dichroism properties of mutant proteins were basically consistent with those of BlGGT. However, guanidine hydrochloride (GdnHCl)-induced transitions of most mutants were profoundly reduced in comparison with that of wild-type enzyme. Molecular modeling suggests that the conserved Gly481 and Gly482 residues of BlGGT are located at critical positions to create an environment suitable for both autoprocessing and catalytic reactions.
Collapse
|
12
|
Kumari S, Pal RK, Gupta R, Goel M. High Resolution X-ray Diffraction Dataset for Bacillus licheniformis Gamma Glutamyl Transpeptidase-acivicin complex: SUMO-Tag Renders High Expression and Solubility. Protein J 2017; 36:7-16. [PMID: 28120227 DOI: 10.1007/s10930-017-9693-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gamma glutamyl transpeptidase, (GGT) is a ubiquitous protein which plays a central role in glutathione metabolism and has myriad clinical implications. It has been shown to be a virulence factor for pathogenic bacteria, inhibition of which results in reduced colonization potential. However, existing inhibitors are effective but toxic and therefore search is on for novel inhibitors, which makes it imperative to understand the interactions of various inhibitors with the protein in substantial detail. High resolution structures of protein bound to different inhibitors can serve this purpose. Gamma glutamyl transpeptidase from Bacillus licheniformis is one of the model systems that have been used to understand the structure-function correlation of the protein. The structures of the native protein (PDB code 4OTT), of its complex with glutamate (PDB code 4OTU) and that of its precursor mimic (PDB code 4Y23) are available, although at moderate/low resolution. In the present study, we are reporting the preliminary analysis of, high resolution X-ray diffraction data collected for the co-crystals of B. licheniformis, Gamma glutamyl transpeptidase, with its inhibitor, Acivicin. Crystals belong to the orthorhombic space group P212121 and diffract X-ray to 1.45 Å resolution. This is the highest resolution data reported for all GGT structures available till now. The use of SUMO fused expression system enhanced yield of the target protein in the soluble fraction, facilitating recovery of protein with high purity. The preliminary analysis of this data set shows clear density for the inhibitor, acivicin, in the protein active site.
Collapse
Affiliation(s)
- Shobha Kumari
- Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Ravi Kant Pal
- National Institute of Immunology (NII), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Manisha Goel
- Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
13
|
Bindal S, Sharma S, Singh TP, Gupta R. Evolving transpeptidase and hydrolytic variants of γ-glutamyl transpeptidase from Bacillus licheniformis by targeted mutations of conserved residue Arg109 and their biotechnological relevance. J Biotechnol 2017; 249:82-90. [PMID: 28365292 DOI: 10.1016/j.jbiotec.2017.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/04/2023]
Abstract
γ-Glutamyl transpeptidase (GGT) catalyzes the transfer of the γ-glutamyl moiety from donor compounds such as l-glutamine (Gln) and glutathione (GSH) to an acceptor. During the biosynthesis of various γ-glutamyl-containing compounds using GGT enzyme, auto-transpeptidation reaction leads to the formation of unwanted byproducts. Therefore, in order to alter the auto-transpeptidase activity of the GGT enzyme, the binding affinity of Gln should be modified. Structural studies of the Bacillus licheniformis GGT (BlGT) complexed with the glutamic acid has shown that glutamic acid has strong ionic interactions through its α-carboxlic group with the guanidine moiety of Arg109. This interaction appears to be an important contributor for the binding affinity of Gln. In view of this, six mutants of Bacillus licheniformis ER15 GGT (BlGGT) viz. Arg109Lys, Arg109Ser, Arg109Met, Arg109Leu, Arg109Glu and Arg109Phe were prepared. As seen from the structure of BlGT, the mutation of Arg109 to Lys109 may reduce the affinity for Gln to some extent, whereas the other mutations are expected to lower the affinity much more. Biophysical characterization and functional studies revealed that Arg109Lys mutant has increased transpeptidation activity and catalytic efficiency than the other mutants. The Arg109Lys mutant showed high conversion rates for l-theanine synthesis as well. Moreover, the Arg109Met mutant showed increased hydrolytic activity as it completely altered the binding of Gln at the active site. Also, the salt stability of the enzyme was significantly improved on replacing Arg109 by Met109 which is required for hydrolytic applications of GGTs in food industries.
Collapse
Affiliation(s)
- Shruti Bindal
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
14
|
Site-directed mutagenesis of a conserved Asn450 residue of Bacillus licheniformis γ-glutamyltranspeptidase. Int J Biol Macromol 2016; 91:416-25. [DOI: 10.1016/j.ijbiomac.2016.05.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 12/29/2022]
|
15
|
Pica A, Chi MC, Chen YY, d'Ischia M, Lin LL, Merlino A. The maturation mechanism of γ-glutamyl transpeptidases: Insights from the crystal structure of a precursor mimic of the enzyme from Bacillus licheniformis and from site-directed mutagenesis studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:195-203. [PMID: 26536828 DOI: 10.1016/j.bbapap.2015.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 01/20/2023]
Abstract
γ-Glutamyl transpeptidases (γ-GTs) are members of N-terminal nucleophile hydrolase superfamily. They are synthetized as single-chain precursors, which are then cleaved to form mature enzymes. Basic aspects of autocatalytic processing of these pro-enzymes are still unknown. Here we describe the X-ray structure of the precursor mimic of Bacillus licheniformis γ-GT (BlGT), obtained by mutating catalytically important threonine to alanine (T399A-BlGT), and report results of autoprocessing of mutants of His401, Thr415, Thr417, Glu419 and Arg571. Data suggest that Thr417 is in a competent position to activate the catalytic threonine (Thr399) for nucleophilic attack of the scissile peptide bond and that Thr415 plays a major role in assisting the process. On the basis of these new structural results, a possible mechanism of autoprocessing is proposed. This mechanism, which guesses the existence of a six-membered transition state involving one carbonyl and two hydroxyl groups, is in agreement with all the available experimental data collected on γ-GTs from different species and with our new Ala-scanning mutagenesis data.
Collapse
Affiliation(s)
- Andrea Pica
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples I-80126, Italy; Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone, 16, Naples 80133, Italy
| | - Meng-Chun Chi
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
| | - Yi-Yu Chen
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples I-80126, Italy
| | - Long-Liu Lin
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples I-80126, Italy; Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone, 16, Naples 80133, Italy.
| |
Collapse
|
16
|
Verma VV, Gupta R, Goel M. "Phylogenetic and evolutionary analysis of functional divergence among Gamma glutamyl transpeptidase (GGT) subfamilies". Biol Direct 2015; 10:49. [PMID: 26370226 PMCID: PMC4568574 DOI: 10.1186/s13062-015-0080-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/02/2015] [Indexed: 01/25/2023] Open
Abstract
Background γ-glutamyltranspeptidase (GGT) is a bi-substrate enzyme conserved in all three domains of life. It catalyzes the cleavage and transfer of γ-glutamyl moiety of glutathione to either water (hydrolysis) or substrates like peptides (transpeptidation). GGTs exhibit great variability in their enzyme kinetics although the mechanism of catalysis is conserved. Recently, GGT has been shown to be a virulence factor in microbes like Helicobacter pylori and Bacillus anthracis. In mammalian cells also, GGT inhibition prior to chemotherapy has been shown to sensitize tumors to the therapy. Therefore, lately both bacterial and eukaryotic GGTs have emerged as potential drug targets, but the efforts directed towards finding suitable inhibitors have not yielded any significant results yet. We propose that delineating the residues responsible for the functional diversity associated with these proteins could help in design of species/clade specific inhibitors. Results In the present study, we have carried out phylogenetic analysis on a set of 47 GGT-like proteins to address the functional diversity. These proteins segregate into various subfamilies, forming separate clades on the tree. Sequence conservation and motif prediction studies show that even though most of the highly conserved residues have been characterized biochemically in previous studies, a significant number of novel putative sites and motifs are discovered that vary in a clade specific manner. Many of the putative sites predicted during the functional divergence type I and type II analysis, lie close to the known catalytic residues and line the walls of the substrate binding cavity, reinforcing their role in modulating the substrate specificity, catalytic rates and stability of this protein. Conclusion The study offers interesting insights into the evolution of GGT-like proteins in pathogenic vs. non-pathogenic bacteria, archaea and eukaryotes. Our analysis delineates residues that are highly specific to each GGT subfamily. We propose that these sites not only explain the differences in stability and catalytic variability of various GGTs but can also aid in design of specific inhibitors against particular GGTs. Thus, apart from the commonly used in-silico inhibitor screening approaches, evolutionary analysis identifying the functional divergence hotspots in GGT proteins could augment the structure based drug design approaches. Reviewers This article was reviewed by Andrei Osterman, Christine Orengo, and Srikrishna Subramanian. For complete reports, see the Reviewers’ reports section Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0080-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ved Vrat Verma
- Department of Biophysics, University of Delhi, South Campus, New Delhi, 110021, India.
| | - Rani Gupta
- Department of Microbiology, University of Delhi, South Campus, New Delhi, 110021, India.
| | - Manisha Goel
- Department of Biophysics, University of Delhi, South Campus, New Delhi, 110021, India.
| |
Collapse
|
17
|
Chen YY, Lo HF, Wang TF, Lin MG, Lin LL, Chi MC. Enzymatic synthesis of γ-l-glutamyl-S-allyl-l-cysteine, a naturally occurring organosulfur compound from garlic, by Bacillus licheniformis γ-glutamyltranspeptidase. Enzyme Microb Technol 2015; 75-76:18-24. [DOI: 10.1016/j.enzmictec.2015.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/30/2015] [Accepted: 04/24/2015] [Indexed: 01/02/2023]
|
18
|
Sun J, Zhou J, Wang Z, He W, Zhang D, Tong Q, Su X. Multi-omics based changes in response to cadmium toxicity in Bacillus licheniformis A. RSC Adv 2015. [DOI: 10.1039/c4ra15280h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cadmium (Cd), a widespread substance with high toxicity and persistence, is known to cause a broad range of adverse effects in all living organisms.
Collapse
Affiliation(s)
- Jing Sun
- School of Marine Sciences
- Ningbo University
- Ningbo 315211
- China
- College of Food Science and Technology
| | - Jun Zhou
- School of Marine Sciences
- Ningbo University
- Ningbo 315211
- China
| | - Zhonghua Wang
- School of Marine Sciences
- Ningbo University
- Ningbo 315211
- China
| | - Weina He
- School of Marine Sciences
- Ningbo University
- Ningbo 315211
- China
| | - Dijun Zhang
- School of Marine Sciences
- Ningbo University
- Ningbo 315211
- China
| | - Qianqian Tong
- School of Marine Sciences
- Ningbo University
- Ningbo 315211
- China
| | - Xiurong Su
- School of Marine Sciences
- Ningbo University
- Ningbo 315211
- China
| |
Collapse
|
19
|
γ-Glutamyl transpeptidase architecture: Effect of extra sequence deletion on autoprocessing, structure and stability of the protein from Bacillus licheniformis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2290-7. [PMID: 25218521 DOI: 10.1016/j.bbapap.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022]
Abstract
γ-Glutamyl transpeptidases (γ-GTs, EC 2.3.2.2) are a class of ubiquitous enzymes which initiate the cleavage of extracellular glutathione (γ-Glu-Cys-Gly, GSH) into its constituent glutamate, cysteine, and glycine and catalyze the transfer of its γ-glutamyl group to water (hydrolysis), amino acids or small peptides (transpeptidation). These proteins utilize a conserved Thr residue to process their chains into a large and a small subunit that then form the catalytically competent enzyme. Multiple sequence alignments have shown that some bacterial γ-GTs, including that from Bacillus licheniformis (BlGT), possess an extra sequence at the C-terminal tail of the large subunit, whose role is unknown. Here, autoprocessing, structure, catalytic activity and stability against both temperature and the chemical denaturant guanidinium hydrochloride of six BlGT extra-sequence deletion mutants have been characterized by SDS-PAGE, circular dichroism, intrinsic fluorescence and homology modeling. Data suggest that the extra sequence has a crucial role in enzyme activation and structural stability. Our results assist in the development of a structure-based interpretation of the autoprocessing reaction of γ-GTs and are helpful to unveil the molecular bases of their structural stability.
Collapse
|