1
|
Liu S, Lu F, Chen S, Ning Y. Graphene oxide-based fluorescent biosensors for pathogenic bacteria detection: A review. Anal Chim Acta 2025; 1337:343428. [PMID: 39800527 DOI: 10.1016/j.aca.2024.343428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND Pathogenic bacteria are widespread in nature and can cause infections and various complications, thereby posing a severe risk to public health. Therefore, simple, rapid, sensitive, and cost-effective methods must be developed to detect pathogenic bacteria. Biosensors are prominent platforms for detecting pathogenic bacteria owing to their high sensitivity, specificity, repeatability, and stability. With the development of nanotechnology, graphene oxide (GO) has been increasingly introduced into the construction of fluorescent biosensors to enhance their performance owing to its unique physicochemical properties. RESULTS This review systematically summarizes the development of GO-based fluorescent biosensors for the detection of pathogenic bacteria. First, we introduce the functionalization and modification of GO. The design and signal amplification strategies for GO-based fluorescent biosensors are also discussed. Finally, we explore the challenges and new perspectives associated with this field, with the aim of facilitating the development of GO-based fluorescent sensing technologies to prevent the spread of multidrug-resistant bacteria. SIGNIFICANCE This review will aid in the development of high-performance biosensors for pathogenic bacterial assays.
Collapse
Affiliation(s)
- Shiwu Liu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Shanquan Chen
- Department of General Education, The School of Humanities and Social Science of the Chinese University of Hong Kong (Shenzhen Campus), Shenzhen, Guangdong, 518172, People's Republic of China.
| | - Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
| |
Collapse
|
2
|
Hu JJ, Wang JP. Production of Natural Penicillin-Binding Protein 2 and Development of a Signal-Amplified Fluorescence Polarization Assay for the Determination of 28 Beta-Lactam Antibiotics in Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27528-27537. [PMID: 39585958 DOI: 10.1021/acs.jafc.4c07028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
In this study, two magnetic activity-based protein profiling probes based on cephradine and amoxicillin were first synthesized that were used to produce the natural penicillin-binding protein 2 of Escherichia coli. After characterization by using LC-ESI-MS/MS, it was found that the obtained proteins by using the two probes were the same. The molecular docking for 28 beta-lactam antibiotics showed that the key amino acids were Ser330 and Ser387, the main intermolecular forces were hydrogen bond and hydrophobic interaction, and the main binding sites in their molecules were on the beta-lactam ring. Then this protein was combined with streptavidin-labeled tracer and biotinylated fluorescein isothiocyanate to establish a signal-amplified fluorescence polarization assay to determine the 28 drugs in milk. The limits of detection ranged from 0.07 to 2.21 ng/mL, and the sensitivities for the 28 drugs were improved 4 to 48-fold in comparison with the use of a fluorescein isothiocyanate-labeled fluorescent tracer. Therefore, this method could be used for rapid multiscreening of the 28 beta-lactam antibiotics in milk.
Collapse
Affiliation(s)
- Jia Jia Hu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Jian Ping Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, Hebei, China
| |
Collapse
|
3
|
Jung J, Jeong Y, Xu Y, Yi J, Kim M, Jeong HJ, Shin SH, Yang YH, Son J, Sung C. Production and engineering of nanobody-based quenchbody sensors for detecting recombinant human growth hormone and its isoforms. Drug Test Anal 2023; 15:1439-1448. [PMID: 37667448 DOI: 10.1002/dta.3562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
Due to athletes' misuse of recombinant human growth hormone (rhGH) for performance improvement, the World Anti-Doping Agency has designated rhGH as a prohibited substance. This study focuses on the development and improvement of a simple and fast rhGH detection method using a fluorescence-incorporated antibody sensor "Quenchbody (Q-body)" that activates upon antigen binding. Camelid-derived nanobodies were used to produce stable Q-bodies that withstand high temperatures and pH levels. Notably, pituitary human growth hormone (phGH) comprises two major isoforms, namely 22 and 20 kDa GH, which exist in a specific ratio, and the rhGH variant shares the same sequence as the 22 kDa GH isoform. Therefore, we aimed to discriminate rhGH abuse by analyzing its specific isoform ratio. Two nanobodies, NbPit (recognizing phGH) and NbRec (preferentially recognizing 22 kDa rhGH), were used to develop the Q-bodies. Nanobody production in Escherichia coli involved the utilization of a vector containing 6xHis-tag, and Q-bodies were obtained using a maleimide-thiol reaction between the N-terminal of the cysteine tag and a fluorescent dye. The addition of tryptophan residue through antibody engineering resulted in increased fluorescence intensity (FI) (from 2.58-fold to 3.04-fold). The limit of detection (LOD) was determined using a fluorescence response, with TAMRA-labeled NbRec successfully detecting 6.38 ng/ml of 22 kDa rhGH while unable to detect 20 kDa GH. However, ATTO520-labeled NbPit detected 7.00 ng/ml of 20 kDa GH and 2.20 ng/ml 22 kDa rhGH. Q-bodies successfully detected changes in the GH concentration ratio from 10 to 40 ng/ml in human serum within 10 min without requiring specialized equipment and kits. Overall, these findings have potential applications in the field of anti-doping measures and can contribute to improved monitoring and enforcement of rhGH misuse, ultimately enhancing fairness and integrity in competitive sports.
Collapse
Affiliation(s)
- Jaehoon Jung
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Yujin Jeong
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Yinglan Xu
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Joonyeop Yi
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Minyoung Kim
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University Sejong-ro 2639, Sejong, Republic of Korea
| | - Sang Hoon Shin
- Department of Surgery, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Yung-Hun Yang
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Changmin Sung
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
4
|
Jeong HJ. Quenchbodies That Enable One-Pot Detection of Antigens: A Structural Perspective. Bioengineering (Basel) 2023; 10:1262. [PMID: 38002387 PMCID: PMC10669387 DOI: 10.3390/bioengineering10111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Quenchbody (Q-body) is a unique, reagentless, fluorescent antibody whose fluorescent intensity increases in an antigen-concentration-dependent manner. Q-body-based homogeneous immunoassay is superior to conventional immunoassays as it does not require multiple immobilization, reaction, and washing steps. In fact, simply mixing the Q-body and the sample containing the antigen enables the detection of the target antigen. To date, various Q-bodies have been developed to detect biomarkers of interest, including haptens, peptides, proteins, and cells. This review sought to describe the principle of Q-body-based immunoassay and the use of Q-body for various immunoassays. In particular, the Q-bodies were classified from a structural perspective to provide useful information for designing Q-bodies with an appropriate objective.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong-si 30016, Republic of Korea
| |
Collapse
|
5
|
Ueda H, Jeong HJ. Generation of a Recombinant scFv against Deoxycholic Acid and Its Conversion to a Quenchbody for One-Step Immunoassay. Methods Protoc 2023; 6:90. [PMID: 37888022 PMCID: PMC10608803 DOI: 10.3390/mps6050090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Development of a rapid detection method for deoxycholic acid (DCA) is crucial for its diagnosis in the early stages of inflammation and cancer. In this study, we expressed a soluble recombinant anti-DCA single-chain variable fragment (scFv) in Escherichia coli. To convert scFv into a Quenchbody (Q-body), we labeled scFv using commercially available maleimide-linked fluorophores. The TAMRA-C5-maleimide-conjugated Q-body showed the highest response within a few minutes of DCA addition, indicating its applicability as a wash-free immunoassay probe for onsite DCA detection.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan;
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
6
|
Islam J, Conroy P, Fercher C, Kim M, Yaari Z, Jones M, Bell TDM, Caradoc-Davies T, Law R, Whisstock J, Heller D, Mahler S, Corrie S. Design of Polarity-Dependent Immunosensors Based on the Structural Analysis of Engineered Antibodies. ACS Chem Biol 2023; 18:1863-1871. [PMID: 37440171 DOI: 10.1021/acschembio.3c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
"Reagentless" immunosensors are emerging to address the challenge of practical and sensitive detection of important biomarkers in real biological samples without the need for multistep assays and user intervention, with applications ranging from research tools to point-of-care diagnostics. Selective target binding to an affinity reagent is detected and reported in one step without the need for washing or additional reporters. In this study, we used a structure-guided approach to identify a mutation site in an antibody fragment for the polarity-dependent fluorophore, Anap, such that upon binding of the protein target cardiac troponin I, the Anap-labeled antibody would produce a detectable and dose-dependent shift in emission wavelength. We observed a significant emission wavelength shift of the Anap-labeled anti-cTnI mutant, with a blue shift of up to 37 nm, upon binding to the cTnI protein. Key differences in the resulting emission spectra between target peptides in comparison to whole proteins were also found; however, the affinity and binding characteristics remained unaffected when compared to the wild-type antibody. We also highlighted the potential flexibility of the approach by incorporating a near-infrared dye, IRDye800CW, into the same mutation site, which also resulted in a dose-dependent wavelength shift upon target incubation. These reagents can be used in experiments and devices to create simpler and more efficient biosensors across a range of research, medical laboratory, and point-of-care platforms.
Collapse
Affiliation(s)
- Jiaul Islam
- Department of Chemical and Biological Engineering, Monash University, Melbourne 3800, Australia
| | - Paul Conroy
- Dept. of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Christian Fercher
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia
| | - Mijin Kim
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Centre, New York 10065, United States
| | - Zvi Yaari
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Centre, New York 10065, United States
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Martina Jones
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia
| | - Toby D M Bell
- School of Chemistry, Monash University, Melbourne 3800, Australia
| | - Tom Caradoc-Davies
- Dept. of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
- Australian Synchrotron - ANSTO, Melbourne 3168, Australia
| | - Ruby Law
- Dept. of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - James Whisstock
- Dept. of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Daniel Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Centre, New York 10065, United States
| | - Stephen Mahler
- Dept. of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Melbourne 3800, Australia
| |
Collapse
|
7
|
Liu Y, Qin Z, Zhou J, Jia X, Li H, Wang X, Chen Y, Sun Z, He X, Li H, Wang G, Chang H. Nano-biosensor for SARS-CoV-2/COVID-19 detection: methods, mechanism and interface design. RSC Adv 2023; 13:17883-17906. [PMID: 37323463 PMCID: PMC10262965 DOI: 10.1039/d3ra02560h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
The epidemic of coronavirus disease 2019 (COVID-19) was a huge disaster to human society. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to COVID-19, has resulted in a large number of deaths. Even though the reverse transcription-polymerase chain reaction (RT-PCR) is the most efficient method for the detection of SARS-CoV-2, the disadvantages (such as long detection time, professional operators, expensive instruments, and laboratory equipment) limit its application. In this review, the different kinds of nano-biosensors based on surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), field-effect transistor (FET), fluorescence methods, and electrochemical methods are summarized, starting with a concise description of their sensing mechanism. The different bioprobes (such as ACE2, S protein-antibody, IgG antibody, IgM antibody, and SARS-CoV-2 DNA probes) with different bio-principles are introduced. The key structural components of the biosensors are briefly introduced to give readers an understanding of the principles behind the testing methods. In particular, SARS-CoV-2-related RNA mutation detection and its challenges are also briefly described. We hope that this review will encourage readers with different research backgrounds to design SARS-CoV-2 nano-biosensors with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Yansheng Liu
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| | - Zhenle Qin
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Jin Zhou
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiaobo Jia
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Hongli Li
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiaohong Wang
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Yating Chen
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Zijun Sun
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiong He
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Hongda Li
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| | - Guofu Wang
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Haixin Chang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| |
Collapse
|
8
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
9
|
Hendrickson OD, Mukhametova LI, Zvereva EA, Zherdev AV, Eremin SA. A Sensitive Fluorescence Polarization Immunoassay for the Rapid Detection of Okadaic Acid in Environmental Waters. BIOSENSORS 2023; 13:bios13040477. [PMID: 37185552 PMCID: PMC10136290 DOI: 10.3390/bios13040477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
In this study, a homogeneous fluorescence polarization immunoassay (FPIA) for the detection of hazardous aquatic toxin okadaic acid (OA) contaminating environmental waters was for the first time developed. A conjugate of the analyte with a fluorophore based on a fluorescein derivative (tracer) was synthesized, and its interaction with specific anti-OA monoclonal antibodies (MAbs) was tested. A MAbs-tracer pair demonstrated highly affine immune binding (KD = 0.8 nM). Under optimal conditions, the limit of OA detection in the FPIA was 0.08 ng/mL (0.1 nM), and the working range of detectable concentrations was 0.4-72.5 ng/mL (0.5-90 nM). The developed FPIA was approbated for the determination of OA in real matrices: river water and seawater samples. No matrix effect of water was observed; therefore, no sample preparation was required before analysis. Due to this factor, the entire analytical procedure took less than 10 min. Using a compact portable fluorescence polarization analyzer enables the on-site testing of water samples. The developed analysis is very fast, easy to operate, and sensitive and can be extended to the determination of other aquatic toxins or low-molecular-weight water or food contaminants.
Collapse
Affiliation(s)
- Olga D Hendrickson
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Liliya I Mukhametova
- Department of Chemical Enzymology, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Elena A Zvereva
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Sergei A Eremin
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
- Department of Chemical Enzymology, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| |
Collapse
|
10
|
Kim JP, Kim SH, Ueda H, Jeong HJ. Generation of Q-bead against bone Gla protein with simplified preparation steps. J Immunol Methods 2023; 516:113471. [PMID: 37044371 DOI: 10.1016/j.jim.2023.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Quenchbody (Q-body)-based immunoassays enable the detection of antigen within a few minutes with high sensitivity and specificity, thereby revealing their applicability as biosensors for quantifying several biomolecules of interest; however, while producing a Q-body, it is necessary to eliminate the unconjugated dye after labeling to separate the Q-body from the capturing bead and to change the buffer using ultrafiltration, which is time-consuming and leads to yield reduction. In this study, we generated a recombinant single chain variable fragment against bone Gla protein as a model antibody. We labeled the antibody with a dye to generate a Q-body and subsequently added affinity beads to the Q-body mixture. After washing, we directly added antigen without extracting the Q-body from the bead and then measured the fluorescence intensity. As a result, the antigen-dependent fluorescence response was obtained from "Q-bead", which was almost the same as that of the Q-body generated according to the conventional method. The Q-bead was generated within only 2.5 h, thus requiring an hour and two steps less than those required for the generation of the traditional Q-body. No expensive Flag peptide was required to recover the total antibody from beads. Moreover, the ultra-filtration step was eliminated in this bead-based method, leading to improved convenience and cost- and time-saving attributes. The Q-bead-based assay can be used as a standard protocol for simple and rapid analysis of antibody-based molecular detection.
Collapse
Affiliation(s)
- Jong-Pyo Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Seon-Hyung Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea.
| |
Collapse
|
11
|
Rani AQ, Zhu B, Ueda H, Kitaguchi T. Recent progress in homogeneous immunosensors based on fluorescence or bioluminescence using antibody engineering. Analyst 2023; 148:1422-1429. [PMID: 36916979 DOI: 10.1039/d2an01913b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Homogeneous immunosensors integrate the advantages of both biosensors and immunoassays; they include speed, high sensitivity, and accuracy. They have been developed rapidly in the past few years and offer a cost-effective alternative technology with rapidity, sensitivity, and user-friendliness, which has been applied in a wide variety of applications. This review introduces the current directions of immunosensor development, focusing on fluorescent and bioluminescent immunosensors and highlighting the advantages, improvements, and key approaches to overcome the limitations of each.
Collapse
Affiliation(s)
- Abdul Qawee Rani
- Moon Creative Lab Inc., 3-10-5 Kitaaoyama, Minato-ku, Tokyo 107-0061, Japan
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| |
Collapse
|
12
|
Kakkar S, Gupta P, Kumar N, Kant K. Progress in Fluorescence Biosensing and Food Safety towards Point-of-Detection (PoD) System. BIOSENSORS 2023; 13:249. [PMID: 36832016 PMCID: PMC9953818 DOI: 10.3390/bios13020249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The detection of pathogens in food substances is of crucial concern for public health and for the safety of the natural environment. Nanomaterials, with their high sensitivity and selectivity have an edge over conventional organic dyes in fluorescent-based detection methods. Advances in microfluidic technology in biosensors have taken place to meet the user criteria of sensitive, inexpensive, user-friendly, and quick detection. In this review, we have summarized the use of fluorescence-based nanomaterials and the latest research approaches towards integrated biosensors, including microsystems containing fluorescence-based detection, various model systems with nano materials, DNA probes, and antibodies. Paper-based lateral-flow test strips and microchips as well as the most-used trapping components are also reviewed, and the possibility of their performance in portable devices evaluated. We also present a current market-available portable system which was developed for food screening and highlight the future direction for the development of fluorescence-based systems for on-site detection and stratification of common foodborne pathogens.
Collapse
Affiliation(s)
- Saloni Kakkar
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Navin Kumar
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Krishna Kant
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
13
|
Development of a Spacer-optimized Quenchbody against Tumor Necrosis Factor Alpha. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Liang J, Dong H, Xu F, Li B, Li H, Chen L, Li M, Liu Y, Jiang G, Dong J. Isolation of a Monoclonal Antibody and its Derived Immunosensor for Rapid and Sensitive Detection of 17β-Estradiol. Front Bioeng Biotechnol 2022; 10:818983. [PMID: 35419351 PMCID: PMC8995505 DOI: 10.3389/fbioe.2022.818983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Estrogens are effective for stimulating several functions in living organisms and for regulating cancer development by promoting cell proliferation. Estradiol can disrupt the reproductive and endocrine systems, leading to the development of various diseases. In this study, the monoclonal antibody ESC9 was developed by immunizing mice with a 17β-estradiol (E2) conjugate, preparing an antibody phage display library, and screening monoclonal antibodies from the prepared library. An antibody with the same sequence as that of ESC9 has not been reported previously. The equilibrium dissociation constant between ESC9 and E2 was found to be 43.3 nM. Additionally, we generated an ESC9-derived immunosensor named as the ESC9 Quenchbody (Q-body), which can rapidly and sensitively detect E2. The assay can be completed within 2 min with a limit of detection of 3.9 pg/ml and half-maximal effective concentration of 154.0 ng/ml. Serum E2 levels were measured using the ESC9 Q-body without pretreatment with serum and with a high recovery rate of 83.3–126.7%. The Q-body immunosensor shows potential for clinical applications based on its excellent detection speed and sensitivity.
Collapse
Affiliation(s)
- Jingru Liang
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Hang Dong
- School of Clinical Medicine, Peking University, Beijing, China
| | - Fei Xu
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Baowei Li
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Haimei Li
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Limei Chen
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Mei Li
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Yingchu Liu
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guosheng Jiang
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
- College of Basic Medicine, Binzhou Medical University, Yantai, China
- *Correspondence: Guosheng Jiang, ; Jinhua Dong,
| | - Jinhua Dong
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- *Correspondence: Guosheng Jiang, ; Jinhua Dong,
| |
Collapse
|
15
|
Zhang H, Li B, Liu Y, Chuan H, Liu Y, Xie P. Immunoassay technology: Research progress in microcystin-LR detection in water samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127406. [PMID: 34689091 DOI: 10.1016/j.jhazmat.2021.127406] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Increasing global warming and eutrophication have led to frequent outbreaks of cyanobacteria blooms in freshwater. Cyanobacteria blooms cause the death of aquatic and terrestrial organisms and have attracted considerable attention since the 19th century. Microcystin-LR (MC-LR) is one of the most typical cyanobacterial toxins. Therefore, the fast, sensitive, and accurate determination of MC-LR plays an important role in the health of humans and animals. Immunoassay refers to a method that uses the principle of immunology to determine the content of the tested substance in a sample using the tested substance as an antigen or antibody. In analytical applications, the immunoassay technology could use the specific recognition of antibodies for MC-LR detection. In this review, we firstly highlight the immunoassay detection of MC-LR over the past two decades, including classical enzyme-link immunosorbent assay (ELISA), modern immunoassay with optical signal, and modern immunoassay with electrical signal. Among these detection methods, the water environment was used as the main detection system. The advantages and disadvantages of the different detection methods were compared and analyzed, and the principles and applications of immunoassays in water samples were elaborated. Furthermore, the current challenges and developmental trends in immunoassay were systematically introduced to enhance MC-LR detection performance, and some critical points were given to deal with current challenges. This review provides novel insight into MC-LR detection based on immunoassay method.
Collapse
Affiliation(s)
- Huixia Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yipeng Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Huiyan Chuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
16
|
Dai Y, Sato Y, Zhu B, Kitaguchi T, Kimura H, Ghadessy FJ, Ueda H. Intra Q-body: an antibody-based fluorogenic probe for intracellular proteins that allows live cell imaging and sorting. Chem Sci 2022; 13:9739-9748. [PMID: 36091915 PMCID: PMC9400599 DOI: 10.1039/d2sc02355e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
Abstract
Although intracellular biomarkers can be imaged with fluorescent dye(s)-labeled antibodies, the use of such probes for precise imaging of intracellular biomarkers in living cells remains challenging due to background noise from unbound probes. Herein, we describe the development of a conditionally active Fab-type Quenchbody (Q-body) probe derived from a monoclonal antibody (DO-1) with the ability to both target and spatiotemporally visualize intracellular p53 in living cells with low background signal. p53 is a key tumor suppressor and validated biomarker for cancer diagnostics and therapeutics. The Q-body displayed up to 27-fold p53 level-dependent fluorescence enhancement in vitro with a limit of detection of 0.72 nM. In fixed and live cells, 8.3- and 8.4-fold enhancement was respectively observed. Furthermore, we demonstrate live-cell sorting based on p53 expression. This study provides the first evidence of the feasibility and applicability of Q-body probes for the live-cell imaging of intrinsically intracellular proteins and opens a novel avenue for research and diagnostic applications on intracellular target-based live-cell sorting. A fluorescent immunosensor that lights up tumor biomarker p53 in living cells was developed based on the Q-body technology. The technology was further applied to the live cell monitoring of p53 levels, and live cell sorting based on p53 expression.![]()
Collapse
Affiliation(s)
- Yancen Dai
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Farid J. Ghadessy
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, A*STAR, Singapore
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
17
|
Dong J, Ueda H. Recent Advances in Quenchbody, a Fluorescent Immunosensor. SENSORS 2021; 21:s21041223. [PMID: 33572319 PMCID: PMC7916128 DOI: 10.3390/s21041223] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/29/2022]
Abstract
The detection of viruses, disease biomarkers, physiologically active substances, drugs, and chemicals is of great significance in many areas of our lives. Immunodetection technology is based on the specificity and affinity of antigen–antibody reactions. Compared with other analytical methods such as liquid chromatography coupled with mass spectrometry, which requires a large and expensive instrument, immunodetection has the advantages of simplicity and good selectivity and is thus widely used in disease diagnosis and food/environmental monitoring. Quenchbody (Q-body), a new type of fluorescent immunosensor, is an antibody fragment labeled with fluorescent dyes. When the Q-body binds to its antigen, the fluorescence intensity increases. The detection of antigens by changes in fluorescence intensity is simple, easy to operate, and highly sensitive. This review comprehensively discusses the principle, construction, application, and current progress related to Q-bodies.
Collapse
Affiliation(s)
- Jinhua Dong
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan;
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Hiroshi Ueda
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan;
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Correspondence: ; Tel.: +81-45-924-5256
| |
Collapse
|
18
|
Laghrib F, Saqrane S, El Bouabi Y, Farahi A, Bakasse M, Lahrich S, El Mhammedi MA. Current progress on COVID-19 related to biosensing technologies: New opportunity for detection and monitoring of viruses. Microchem J 2020; 160:105606. [PMID: 33052148 PMCID: PMC7543751 DOI: 10.1016/j.microc.2020.105606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 infection poses a serious risk to human life by causing acute lung damage. Various techniques used to identify and quantify COVID-19 infection. Major challenges for containing the spread of COVID-19 is the ability to identify asymptomatic cases. Currently available diagnostic methods, biosensing technology developed during COVID-19 infection.
The technologies used for coronavirus testing consist of a pre-existing device developed to examine different pathologies, such as bacterial infections, or cancer biomarkers. However, for the 2019 pandemic, researchers knew that their technology could be modified to detect a low viral load at an early stage. Today, countries around the world are working to control the new coronavirus disease (n-SARS-CoV-2). From this perspective, laboratories, universities, and companies around the world have embarked on a race to develop and produce much-needed test kits. This review has been developed to provide an overview of current trends and strategies in n-SARS-CoV-2 diagnostics based on traditional and new emerging assessment technologies, to continuous innovation. It focuses on recent trends in biosensors to build a fast, reliable, more sensitive, accessible, user-friendly system and easily adaptable technology n-SARS-CoV-2 detection and monitoring. On the whole, we have addressed and identified research evidence supporting the use of biosensors on the premise that screening people for n-SARS-CoV-2 is the best way to contain its spread.
Collapse
Affiliation(s)
- F Laghrib
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - Y El Bouabi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - A Farahi
- Ibn Zohr University, Team of Catalysis and Environment, Faculty of Sciences, BP 8106 Agadir, Morocco
| | - M Bakasse
- Chouaib Doukkali University, Faculty of Sciences, Laboratory of Organic Bioorganic Chemistry and Environment, El Jadida, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| |
Collapse
|
19
|
He K, Zeng S, Qian L. Recent progress in the molecular imaging of therapeutic monoclonal antibodies. J Pharm Anal 2020; 10:397-413. [PMID: 33133724 PMCID: PMC7591813 DOI: 10.1016/j.jpha.2020.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/01/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Therapeutic monoclonal antibodies have become one of the central components of the healthcare system and continuous efforts are made to bring innovative antibody therapeutics to patients in need. It is equally critical to acquire sufficient knowledge of their molecular structure and biological functions to ensure the efficacy and safety by incorporating new detection approaches since new challenges like individual differences and resistance are presented. Conventional techniques for determining antibody disposition including plasma drug concentration measurements using LC-MS or ELISA, and tissue distribution using immunohistochemistry and immunofluorescence are now complemented with molecular imaging modalities like positron emission tomography and near-infrared fluorescence imaging to obtain more dynamic information, while methods for characterization of antibody's interaction with the target antigen as well as visualization of its cellular and intercellular behavior are still under development. Recent progress in detecting therapeutic antibodies, in particular, the development of methods suitable for illustrating the molecular dynamics, is described here.
Collapse
Affiliation(s)
- Kaifeng He
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
20
|
Li X, Huang X, Zhang L, Cong Y, Zhao G, Liang J, Chen H, Li H, Chen L, Dong J. Development of a fluorescent probe for the detection of hPD-L1. J Biosci Bioeng 2020; 130:431-436. [PMID: 32690363 DOI: 10.1016/j.jbiosc.2020.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 01/19/2023]
Abstract
Interaction of human programmed death factor-1 (hPD-1) of T cells and one of its ligands hPD-L1 which is expressed on cancer cells suppresses effector T cell functions. Studies showed that the hPD-1/hPD-L1 pathway is associated with killing mechanisms of tumor cells evading the immune system. Immunotherapy based on the checkpoint inhibitor on hPD-1 has been an important approach to treat cancer; however, not all cancer cells over-express hPD-L1. Detection of hPD-L1 over-expression in cancer cells may be a key factor for deciding on whether immunotherapy should be conducted. In the present study, we produced recombinant hPD-1 using Escherichia coli, and created a fluorescent probe termed quenched hPD-1 (QPD-1) for the detection of hPD-L1. We found that hPD-1 can quench fluorescence of carboxytetramethylrhodamine labeled on its N-terminal and QPD-1 is a convenient tool to rapidly detect hPD-L1 with a limit of detection of 10 nM and detectable range of 10 nM-1000 nM. QPD-1 may also function as a probe to screen for hPD-L1 over-expressing tumor cells and promote appropriate medical procedure through tumor immunotherapy.
Collapse
Affiliation(s)
- Xinyu Li
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Xiaoming Huang
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Liqian Zhang
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Yang Cong
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Guangwei Zhao
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Jingru Liang
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Hao Chen
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Haimei Li
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Limei Chen
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Jinhua Dong
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China; World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| |
Collapse
|
21
|
McCord JP, Grove TZ. Engineering repeat proteins of the immune system. Biopolymers 2020; 111:e23348. [PMID: 32031681 DOI: 10.1002/bip.23348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022]
Abstract
Limitations associated with immunoglobulins have motivated the search for novel binding scaffolds. Repeat proteins have emerged as one promising class of scaffolds, but often are limited to binding protein and peptide targets. An exception is the repeat proteins of the immune system, which have in recent years served as an inspiration for binding scaffolds which can bind glycans and other classes of biomolecule. Like other repeat proteins, these proteins can be very stable and have a monomeric mode of binding, with elongated and highly variable binding surfaces. The ability to target glycans and glycoproteins fill an important gap in current tools for research and biomedical applications.
Collapse
Affiliation(s)
- Jennifer P McCord
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A
| | - Tijana Z Grove
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A.,Zarkovic Grove Consulting, LLC, Blacksburg, VA, U.S.A
| |
Collapse
|
22
|
Kurumida Y, Hayashi N. Development of a Novel Q-body Using an In Vivo Site-Specific Unnatural Amino Acid Incorporation System. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2519. [PMID: 30071687 PMCID: PMC6111544 DOI: 10.3390/s18082519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 11/28/2022]
Abstract
A Q-body capable of detecting target molecules in solutions could serve as a simple molecular detection tool. The position of the fluorescent dye in a Q-body affects sensitivity and therefore must be optimized. This report describes the development of Nef Q-bodies that recognize Nef protein, one of the human immunodeficiency virus (HIV)'s gene products, in which fluorescent dye molecules were placed at various positions using an in vivo unnatural amino acid incorporation system. A maximum change in fluorescence intensity of 2-fold was observed after optimization of the dye position. During the process, some tryptophan residues of the antibody were found to quench the fluorescence. Moreover, analysis of the epitope indicated that some amino acid residues of the antigen located near the epitope affected the fluorescence intensity.
Collapse
Affiliation(s)
- Yoichi Kurumida
- Department of Life Science, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.
| | - Nobuhiro Hayashi
- Department of Life Science, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
23
|
Rapid detection of the neonicotinoid insecticide imidacloprid using a quenchbody assay. Anal Bioanal Chem 2018; 410:4219-4226. [DOI: 10.1007/s00216-018-1074-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
24
|
Dong J, Fujita R, Zako T, Ueda H. Construction of Quenchbodies to detect and image amyloid β oligomers. Anal Biochem 2018; 550:61-67. [PMID: 29678763 DOI: 10.1016/j.ab.2018.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 02/04/2023]
Abstract
A quenchbody (Q-body) is an antibody-based biosensor that employs fluorescence quenching of the dye(s) attached to the antibody fragment, which are de-quenched upon antigen binding. In this study, we aimed to develop Fab type Q-bodies (UQ-bodies) to aid the diagnosis of Alzheimer's disease (AD). Characteristic senile plaques in AD consist of amyloid-β peptide (Aβ) generated from the amyloid precursor protein. Aβ42, one of the major peptide forms, aggregates fast and manifests higher neurotoxicity. Recent studies showed that Aβ oligomers, such as Aβ-derived diffusible ligand (ADDL), are more toxic than fibrils. Thus, detection of Aβ and its oligomers in body fluid might help detect deterioration caused by the disease. To this end, the Fab fragment of the anti-Aβ antibody h12A11, which binds preferentially to ADDL, was expressed in Escherichia coli, and labeled with a fluorescent dye at the N terminus of either the heavy chain, or the heavy and light chains, via Cys-containing tag(s) to prepare UQ-bodies. As a result, the double-labeled UQ-bodies detected ADDL with higher sensitivity than that for the Aβ peptide. In addition, the UQ-body could be used to image aggregated Aβ with a low background, which suggested the potential of UQ-bodies as a fast bioimaging tool.
Collapse
Affiliation(s)
- Jinhua Dong
- Key Laboratory of Biological Medicine in Universities of Shandong Province, School of Bioscience and Technology, Weifang Medical University, 7166 Baotongxi, Weifang, Shandong 261053, PR China; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 Japan
| | - Richi Fujita
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan
| | - Tamotsu Zako
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, 2-5, Bunkyo-cho, Matsuyama, Ehime 790-8577 Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 Japan.
| |
Collapse
|
25
|
Fukunaga K, Watanabe T, Novitasari D, Ohashi H, Abe R, Hohsaka T. Antigen-responsive fluorescent antibody probes generated by selective N-terminal modification of IgGs. Chem Commun (Camb) 2018; 54:12734-12737. [DOI: 10.1039/c8cc07827k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescent antibody probes showing antigen-dependent fluorescence responses were developed by N-terminal-selective reductive alkylation of IgGs.
Collapse
Affiliation(s)
- Keisuke Fukunaga
- School of Materials Science
- Japan Advanced Institute of Science and Technology (JAIST)
- Ishikawa 923-1292
- Japan
| | - Takayoshi Watanabe
- School of Materials Science
- Japan Advanced Institute of Science and Technology (JAIST)
- Ishikawa 923-1292
- Japan
| | - Dian Novitasari
- School of Materials Science
- Japan Advanced Institute of Science and Technology (JAIST)
- Ishikawa 923-1292
- Japan
| | | | - Ryoji Abe
- Ushio Incorporated
- Yokohama 225-0004
- Japan
| | - Takahiro Hohsaka
- School of Materials Science
- Japan Advanced Institute of Science and Technology (JAIST)
- Ishikawa 923-1292
- Japan
| |
Collapse
|
26
|
Jeong HJ, Kawamura T, Iida M, Kawahigashi Y, Takigawa M, Ohmuro-Matsuyama Y, Chung CI, Dong J, Kondoh M, Ueda H. Development of a Quenchbody for the Detection and Imaging of the Cancer-Related Tight-Junction-Associated Membrane Protein Claudin. Anal Chem 2017; 89:10783-10789. [PMID: 28972746 DOI: 10.1021/acs.analchem.7b02047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Claudins (CLs) are membrane proteins found in tight junctions and play a major role in establishing the intercellular barrier. However, some CLs are abnormally overexpressed on tumor cells and are valid clinical biomarkers for cancer diagnosis. Here, we constructed antibody Fab fragment-based Quenchbodies (Q-bodies) as effective and reliable fluorescent sensors for detecting and visualizing CLs on live tumor cells. The variable region genes for anti-CL1 and anti-CL4 antibodies were used to express recombinant Fab fragments, and clones recognizing CL4 with high affinity were selected for making Q-bodies. When two fluorescent dyes were conjugated to the N-terminal tags attached to the Fab, the fluorescent signal was significantly increased after adding nanomolar-levels of purified CL4. Moreover, addition of the Q-body to CL4-expressing cells including CL4-positive cancer cells led to a clear fluorescence signal with low background, even without washing steps. Our findings suggested that such Q-bodies would serve as a potent tool for specifically illuminating membrane targets expressed on cancer cells, both in vitro and in vivo.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takuya Kawamura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Manami Iida
- Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka 565-0871, Japan
| | - Yumi Kawahigashi
- Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka 565-0871, Japan
| | - Mutsumi Takigawa
- Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka 565-0871, Japan
| | - Yuki Ohmuro-Matsuyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Chan-I Chung
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Jinhua Dong
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.,Key Laboratory of Biological Medicine in Universities of Shandong Province, School of Bioscience and Technology, Weifang Medical University , Weifang, Shandong 261053, P.R. China
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka 565-0871, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
27
|
Neethirajan S, Ahmed SR, Chand R, Buozis J, Nagy É. Recent Advances in Biosensor Development for Foodborne Virus Detection. Nanotheranostics 2017; 1:272-295. [PMID: 29071193 PMCID: PMC5646734 DOI: 10.7150/ntno.20301] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/07/2017] [Indexed: 11/05/2022] Open
Abstract
Outbreaks of foodborne diseases related to fresh produce have been increasing in North America and Europe. Viral foodborne pathogens are poorly understood, suffering from insufficient awareness and surveillance due to the limits on knowledge, availability, and costs of related technologies and devices. Current foodborne viruses are emphasized and newly emerging foodborne viruses are beginning to attract interest. To face current challenges regarding foodborne pathogens, a point-of-care (POC) concept has been introduced to food testing technology and device. POC device development involves technologies such as microfluidics, nanomaterials, biosensors and other advanced techniques. These advanced technologies, together with the challenges in developing foodborne virus detection assays and devices, are described and analysed in this critical review. Advanced technologies provide a path forward for foodborne virus detection, but more research and development will be needed to provide the level of manufacturing capacity required.
Collapse
Affiliation(s)
- Suresh Neethirajan
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Syed Rahin Ahmed
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Rohit Chand
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John Buozis
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Éva Nagy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
28
|
Ohashi H, Matsumoto T, Jeong HJ, Dong J, Abe R, Ueda H. Insight into the Working Mechanism of Quenchbody: Transition of the Dye around Antibody Variable Region That Fluoresces upon Antigen Binding. Bioconjug Chem 2016; 27:2248-2253. [DOI: 10.1021/acs.bioconjchem.6b00217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroyuki Ohashi
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Ushio Incorporated, 6409 Motoishikawa-cho, Aoba-ku, Yokohama 225-0004, Japan
| | - Takashi Matsumoto
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hee-Jin Jeong
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Laboratory
for Chemistry and Life Science, Tokyo Institute of Technology, 4259-R1-18,
Nagatsuta-cho, Midori-ku, Yokoyama, Kanagawa 226-8503, Japan
| | - Jinhua Dong
- Laboratory
for Chemistry and Life Science, Tokyo Institute of Technology, 4259-R1-18,
Nagatsuta-cho, Midori-ku, Yokoyama, Kanagawa 226-8503, Japan
| | - Ryoji Abe
- Ushio Incorporated, 6409 Motoishikawa-cho, Aoba-ku, Yokohama 225-0004, Japan
| | - Hiroshi Ueda
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Laboratory
for Chemistry and Life Science, Tokyo Institute of Technology, 4259-R1-18,
Nagatsuta-cho, Midori-ku, Yokoyama, Kanagawa 226-8503, Japan
| |
Collapse
|
29
|
Siontorou CG, Georgopoulos KN, Nikoleli GP, Nikolelis DP, Karapetis SK, Bratakou S. Protein-Based Graphene Biosensors: Optimizing Artificial Chemoreception in Bilayer Lipid Membranes. MEMBRANES 2016; 6:E43. [PMID: 27618113 PMCID: PMC5041034 DOI: 10.3390/membranes6030043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022]
Abstract
Proteinaceous moieties are critical elements in most detection systems, including biosensing platforms. Their potential is undoubtedly vast, yet many issues regarding their full exploitation remain unsolved. On the other hand, the biosensor formats with the higher marketability probabilities are enzyme in nature and electrochemical in concept. To no surprise, alternative materials for hosting catalysis within an electrode casing have received much attention lately to demonstrate a catalysis-coated device. Graphene and ZnO are presented as ideal materials to modify electrodes and biosensor platforms, especially in protein-based detection. Our group developed electrochemical sensors based on these nanomaterials for the sensitive detection of cholesterol using cholesterol oxidase incorporated in stabilized lipid films. A comparison between the two platforms is provided and discussed. In a broader sense, the not-so-remote prospect of quickly assembling a protein-based flexible biosensing detector to fulfill site-specific requirements is appealing to both university researchers and industry developers.
Collapse
Affiliation(s)
- Christina G Siontorou
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industry, University of Piraeus, Piraeus 18534, Greece.
| | - Konstantinos N Georgopoulos
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industry, University of Piraeus, Piraeus 18534, Greece.
| | - Georgia-Paraskevi Nikoleli
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Department of Chemical Sciences, National Technical University of Athens, Athens 15780, Greece.
| | - Dimitrios P Nikolelis
- Laboratory of Environmental Chemistry, Department of Chemistry, University of Athens, Athens 15771, Greece.
| | - Stefanos K Karapetis
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Department of Chemical Sciences, National Technical University of Athens, Athens 15780, Greece.
| | - Spyridoula Bratakou
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Department of Chemical Sciences, National Technical University of Athens, Athens 15780, Greece.
| |
Collapse
|
30
|
Dong J, Jeong HJ, Ueda H. Preparation of Quenchbodies by protein transamination reaction. J Biosci Bioeng 2016; 122:125-30. [DOI: 10.1016/j.jbiosc.2015.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/27/2022]
|
31
|
Yoshikoshi K, Watanabe T, Hohsaka T. Double-Fluorescent-Labeled Single-Chain Antibodies Showing Antigen-Dependent Fluorescence Ratio Change. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20150384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kensuke Yoshikoshi
- School of Materials Science, Japan Advanced Institute of Science and Technology
| | - Takayoshi Watanabe
- School of Materials Science, Japan Advanced Institute of Science and Technology
| | - Takahiro Hohsaka
- School of Materials Science, Japan Advanced Institute of Science and Technology
| |
Collapse
|
32
|
Jeong HJ, Kawamura T, Dong J, Ueda H. Q-Bodies from Recombinant Single-Chain Fv Fragment with Better Yield and Expanded Palette of Fluorophores. ACS Sens 2015. [DOI: 10.1021/acssensors.5b00089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hee-Jin Jeong
- Chemical
Resources Laboratory, Tokyo Institute of Technology, 4259-R1-18,
Nagatsuta-cho, Midori-ku, Yokoyama, Kanagawa 226-8503, Japan
| | - Takuya Kawamura
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jinhua Dong
- Chemical
Resources Laboratory, Tokyo Institute of Technology, 4259-R1-18,
Nagatsuta-cho, Midori-ku, Yokoyama, Kanagawa 226-8503, Japan
| | - Hiroshi Ueda
- Chemical
Resources Laboratory, Tokyo Institute of Technology, 4259-R1-18,
Nagatsuta-cho, Midori-ku, Yokoyama, Kanagawa 226-8503, Japan
| |
Collapse
|
33
|
Yoshinari T, Ohashi H, Abe R, Kaigome R, Ohkawa H, Sugita-Konishi Y. Development of a rapid method for the quantitative determination of deoxynivalenol using Quenchbody. Anal Chim Acta 2015; 888:126-30. [DOI: 10.1016/j.aca.2015.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
|
34
|
Senutovitch N, Vernetti L, Boltz R, DeBiasio R, Gough A, Taylor DL. Fluorescent protein biosensors applied to microphysiological systems. Exp Biol Med (Maywood) 2015; 240:795-808. [PMID: 25990438 PMCID: PMC4464952 DOI: 10.1177/1535370215584934] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This mini-review discusses the evolution of fluorescence as a tool to study living cells and tissues in vitro and the present role of fluorescent protein biosensors (FPBs) in microphysiological systems (MPSs). FPBs allow the measurement of temporal and spatial dynamics of targeted cellular events involved in normal and perturbed cellular assay systems and MPSs in real time. FPBs evolved from fluorescent analog cytochemistry (FAC) that permitted the measurement of the dynamics of purified proteins covalently labeled with environmentally insensitive fluorescent dyes and then incorporated into living cells, as well as a large list of diffusible fluorescent probes engineered to measure environmental changes in living cells. In parallel, a wide range of fluorescence microscopy methods were developed to measure the chemical and molecular activities of the labeled cells, including ratio imaging, fluorescence lifetime, total internal reflection, 3D imaging, including super-resolution, as well as high-content screening. FPBs evolved from FAC by combining environmentally sensitive fluorescent dyes with proteins in order to monitor specific physiological events such as post-translational modifications, production of metabolites, changes in various ion concentrations, and the dynamic interaction of proteins with defined macromolecules in time and space within cells. Original FPBs involved the engineering of fluorescent dyes to sense specific activities when covalently attached to particular domains of the targeted protein. The subsequent development of fluorescent proteins (FPs), such as the green fluorescent protein, dramatically accelerated the adoption of studying living cells, since the genetic "labeling" of proteins became a relatively simple method that permitted the analysis of temporal-spatial dynamics of a wide range of proteins. Investigators subsequently engineered the fluorescence properties of the FPs for environmental sensitivity that, when combined with targeted proteins/peptides, created a new generation of FPBs. Examples of FPBs that are useful in MPS are presented, including the design, testing, and application in a liver MPS.
Collapse
Affiliation(s)
- Nina Senutovitch
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| | - Robert Boltz
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| |
Collapse
|
35
|
A signal-on fluorosensor based on quench-release principle for sensitive detection of antibiotic rapamycin. BIOSENSORS-BASEL 2015; 5:131-40. [PMID: 25822756 PMCID: PMC4493541 DOI: 10.3390/bios5020131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/13/2015] [Accepted: 03/20/2015] [Indexed: 11/17/2022]
Abstract
An antibiotic rapamycin is one of the most commonly used immunosuppressive drugs, and also implicated for its anti-cancer activity. Hence, the determination of its blood level after organ transplantation or tumor treatment is of great concern in medicine. Although there are several rapamycin detection methods, many of them have limited sensitivity, and/or need complicated procedures and long assay time. As a novel fluorescent biosensor for rapamycin, here we propose "Q'-body", which works on the fluorescence quench-release principle inspired by the antibody-based quenchbody (Q-body) technology. We constructed rapamycin Q'-bodies by linking the two interacting domains FKBP12 and FRB, whose association is triggered by rapamycin. The fusion proteins were each incorporated position-specifically with one of fluorescence dyes ATTO520, tetramethylrhodamine, or ATTO590 using a cell-free translation system. As a result, rapid rapamycin dose-dependent fluorescence increase derived of Q'-bodies was observed, especially for those with ATTO520 with a lowest detection limit of 0.65 nM, which indicates its utility as a novel fluorescent biosensor for rapamycin.
Collapse
|
36
|
Gonçalves AM, Pedro AQ, Santos FM, Martins LM, Maia CJ, Queiroz JA, Passarinha LA. Trends in protein-based biosensor assemblies for drug screening and pharmaceutical kinetic studies. Molecules 2014; 19:12461-85. [PMID: 25153865 PMCID: PMC6270898 DOI: 10.3390/molecules190812461] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 12/20/2022] Open
Abstract
The selection of natural and chemical compounds for potential applications in new pharmaceutical formulations constitutes a time-consuming procedure in drug screening. To overcome this issue, new devices called biosensors, have already demonstrated their versatility and capacity for routine clinical diagnosis. Designed to perform analytical analysis for the detection of a particular analyte, biosensors based on the coupling of proteins to amperometric and optical devices have shown the appropriate selectivity, sensibility and accuracy. During the last years, the exponential demand for pharmacokinetic studies in the early phases of drug development, along with the need of lower molecular weight detection, have led to new biosensor structure materials with innovative immobilization strategies. The result has been the development of smaller, more reproducible biosensors with lower detection limits, and with a drastic reduction in the required sample volumes. Therefore in order to describe the main achievements in biosensor fields, the present review has the main aim of summarizing the essential strategies used to generate these specific devices, that can provide, under physiological conditions, a credible molecule profile and assess specific pharmacokinetic parameters.
Collapse
Affiliation(s)
- Ana M Gonçalves
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| | - Augusto Q Pedro
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| | - Fátima M Santos
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| | - Luís M Martins
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| | - Cláudio J Maia
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| | - João A Queiroz
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| | - Luís A Passarinha
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| |
Collapse
|