1
|
Mir Drikvand R, Sohrabi SM, Sohrabi SS, Samiei K. Molecular Identification and Characterization of Hevein Antimicrobial Peptide Genes in Two-Row and Six-Row Cultivars of Barley (Hordeum vulgare L.). Biochem Genet 2024; 62:5092-5114. [PMID: 38386212 DOI: 10.1007/s10528-024-10695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Heveins are one of the most important groups of plant antimicrobial peptides. So far, various roles in plant growth and development and in response to biotic and abiotic stresses have reported for heveins. The present study aimed to identify and characterize the hevein genes in two-row and six-row cultivars of barley. In total, thirteen hevein genes were identified in the genome of two-row and six-row cultivars of barley. The identified heveins were identical in two-row and six-row cultivars of barley and showed a high similarity with heveins from other plant species. The hevein coding sequences produced open reading frames (ORFs) ranged from 342 to 1002 bp. Most of the identified hevein genes were intronless, and the others had only one intron. The hevein ORFs produced proteins ranged from 113 to 333 amino acids. Search for conserved functional domains showed CBD and LYZ domains in barley heveins. All barley heveins comprised extracellular signal peptides ranged from 19 to 35 amino acids. The phylogenetic analysis divided barley heveins into two groups. The promoter analysis showed regulatory elements with different frequencies between two-row and six-row cultivars. These cis-acting elements included elements related to growth and development, hormone response, and environmental stresses. The expression analysis showed high expression level of heveins in root and reproductive organs of both two-row and six-row cultivars. The expression analysis also showed that barley heveins is induced by both biotic and abiotic stresses. The results of antimicrobial activity prediction showed the highest antimicrobial activity in CBD domain of barley heveins. The findings of the current study can improve our knowledge about the role of hevein genes in plant and can be used for future studies.
Collapse
Affiliation(s)
- Reza Mir Drikvand
- Department of Plant Genetics and Breeding, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran.
| | - Seyyed Mohsen Sohrabi
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Shahid Chamran University, Ahvaz, Iran
| | - Seyed Sajad Sohrabi
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Kamran Samiei
- Department of Plant Genetics and Breeding, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran
| |
Collapse
|
2
|
Herlinawati E, Montoro P, Ismawanto S, Syafaah A, Aji M, Giner M, Flori A, Gohet E, Oktavia F. Dynamic analysis of Tapping Panel Dryness in Hevea brasiliensis reveals new insights on this physiological syndrome affecting latex production. Heliyon 2022; 8:e10920. [PMID: 36217460 PMCID: PMC9547236 DOI: 10.1016/j.heliyon.2022.e10920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/15/2021] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Tapping Panel Dryness (TPD) is a physiological disorder affecting natural rubber production in Hevea brasiliensis. TPD is associated with clonal susceptibility and overexploitation of rubber trees. Most studies are based on a binary point view of the absence or presence of TPD. This study sets out to characterize the dynamic of the TPD onset through the monthly monitoring of the dry cut length. This reveals the presence of dry spots on the tapped panel of any trees. The frequency of these dry spots increases dramatically in trees developing high level of TPD. Brown bast is an irreversible form of TPD. Brown bast is correlated to a high level of dry cut length. Application of an intensive harvesting system induces early TPD occurrence, which facilitates the study of TPD. Among latex diagnosis parameters, only sucrose content is significantly associated with TPD. Other parameters are more prone to environmental effects and are not reliable as physiological markers. These findings explain the contradictory conclusions of some papers. This study suggests to use intensive harvesting system and monitor the dry cut length for genetic analysis of TPD.
Collapse
Affiliation(s)
- Eva Herlinawati
- Sembawa Research Centre, Indonesian Rubber Research Institute, Palembang, Indonesia,Sungei Putih Research Centre, Indonesian Rubber Research Institute, Deli Serdang, Sumatera Utara 20585, Indonesia
| | - Pascal Montoro
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France,UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France,Sungei Putih Research Centre, Indonesian Rubber Research Institute, Deli Serdang, Sumatera Utara 20585, Indonesia,Corresponding author.
| | - Sigit Ismawanto
- Sembawa Research Centre, Indonesian Rubber Research Institute, Palembang, Indonesia,Sungei Putih Research Centre, Indonesian Rubber Research Institute, Deli Serdang, Sumatera Utara 20585, Indonesia
| | - Afdholiatus Syafaah
- Sembawa Research Centre, Indonesian Rubber Research Institute, Palembang, Indonesia
| | - Martini Aji
- Sembawa Research Centre, Indonesian Rubber Research Institute, Palembang, Indonesia,Sungei Putih Research Centre, Indonesian Rubber Research Institute, Deli Serdang, Sumatera Utara 20585, Indonesia
| | - Michel Giner
- CIRAD, UPR AIDA, F-34398 Montpellier, France,Sungei Putih Research Centre, Indonesian Rubber Research Institute, Deli Serdang, Sumatera Utara 20585, Indonesia
| | - Albert Flori
- CIRAD, UMR ABSys, F-34398 Montpellier, France,Sungei Putih Research Centre, Indonesian Rubber Research Institute, Deli Serdang, Sumatera Utara 20585, Indonesia
| | - Eric Gohet
- CIRAD, UMR ABSys, F-34398 Montpellier, France,Sungei Putih Research Centre, Indonesian Rubber Research Institute, Deli Serdang, Sumatera Utara 20585, Indonesia
| | - Fetrina Oktavia
- Sembawa Research Centre, Indonesian Rubber Research Institute, Palembang, Indonesia,Sungei Putih Research Centre, Indonesian Rubber Research Institute, Deli Serdang, Sumatera Utara 20585, Indonesia
| |
Collapse
|
3
|
Nasi GI, Aktypi FD, Spatharas PM, Louros NN, Tsiolaki PL, Magafa V, Trougakos IP, Iconomidou VA. Arabidopsis thaliana Plant Natriuretic Peptide Active Domain Forms Amyloid-like Fibrils in a pH-Dependent Manner. PLANTS (BASEL, SWITZERLAND) 2021; 11:9. [PMID: 35009013 PMCID: PMC8747288 DOI: 10.3390/plants11010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
Plant natriuretic peptides (PNPs) are hormones that have been extracted from many different species, with the Arabidopsis thaliana PNP (AtPNP-A) being the most studied among them. AtPNP-A is a signaling molecule that consists of 130 residues and is secreted into the apoplast, under conditions of biotic or abiotic stress. AtPNP-A has distant sequence homology with human ANP, a protein that forms amyloid fibrils in vivo. In this work, we investigated the amyloidogenic properties of a 34-residue-long peptide, located within the AtPNP-A sequence, in three different pH conditions, using transmission electron microscopy, X-ray fiber diffraction, ATR FT-IR spectroscopy, Congo red and Thioflavin T staining assays. We also utilize bioinformatics tools to study its association with known plant amyloidogenic proteins and other A. thaliana proteins. Our results reveal a new case of a pH-dependent amyloid forming peptide in A. thaliana, with a potential functional role.
Collapse
Affiliation(s)
- Georgia I. Nasi
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece; (G.I.N.); (F.D.A.); (P.M.S.); (N.N.L.); (P.L.T.); (I.P.T.)
| | - Foteini D. Aktypi
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece; (G.I.N.); (F.D.A.); (P.M.S.); (N.N.L.); (P.L.T.); (I.P.T.)
| | - Panagiotis M. Spatharas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece; (G.I.N.); (F.D.A.); (P.M.S.); (N.N.L.); (P.L.T.); (I.P.T.)
| | - Nikolaos N. Louros
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece; (G.I.N.); (F.D.A.); (P.M.S.); (N.N.L.); (P.L.T.); (I.P.T.)
| | - Paraskevi L. Tsiolaki
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece; (G.I.N.); (F.D.A.); (P.M.S.); (N.N.L.); (P.L.T.); (I.P.T.)
| | - Vassiliki Magafa
- Department of Pharmacy, University of Patras, 265 04 Patras, Greece;
| | - Ioannis P. Trougakos
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece; (G.I.N.); (F.D.A.); (P.M.S.); (N.N.L.); (P.L.T.); (I.P.T.)
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece; (G.I.N.); (F.D.A.); (P.M.S.); (N.N.L.); (P.L.T.); (I.P.T.)
| |
Collapse
|
4
|
Gómez-Pérez D, Chaudhry V, Kemen A, Kemen E. Amyloid Proteins in Plant-Associated Microbial Communities. Microb Physiol 2021; 31:88-98. [PMID: 34107493 DOI: 10.1159/000516014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 11/19/2022]
Abstract
Amyloids have proven to be a widespread phenomenon rather than an exception. Many proteins presenting the hallmarks of this characteristic beta sheet-rich folding have been described to date. Particularly common are functional amyloids that play an important role in the promotion of survival and pathogenicity in prokaryotes. Here, we describe important developments in amyloid protein research that relate to microbe-microbe and microbe-host interactions in the plant microbiome. Starting with biofilms, which are a broad strategy for bacterial persistence that is extremely important for plant colonization. Microbes rely on amyloid-based mechanisms to adhere and create a protective coating that shelters them from external stresses and promotes cooperation. Another strategy generally carried out by amyloids is the formation of hydrophobic surface layers. Known as hydrophobins, these proteins coat the aerial hyphae and spores of plant pathogenic fungi, as well as certain bacterial biofilms. They contribute to plant virulence through promoting dissemination and infectivity. Furthermore, antimicrobial activity is an interesting outcome of the amyloid structure that has potential application in medicine and agriculture. There are many known antimicrobial amyloids released by animals and plants; however, those produced by bacteria or fungi remain still largely unknown. Finally, we discuss amyloid proteins with a more indirect mode of action in their host interactions. These include virulence-promoting harpins, signaling transduction that functions through amyloid templating, and root nodule bacteria proteins that promote plant-microbe symbiosis. In summary, amyloids are an interesting paradigm for their many functional mechanisms linked to bacterial survival in plant-associated microbial communities.
Collapse
Affiliation(s)
| | | | - Ariane Kemen
- ZMBP/IMIT, University of Tübingen, Tübingen, Germany
| | - Eric Kemen
- ZMBP/IMIT, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Cloning and Aggregation Characterization of Rubber Elongation Factor and Small Rubber Particle Protein from Ficus carica. Mol Biotechnol 2017; 60:83-91. [DOI: 10.1007/s12033-017-0051-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Antonets KS, Nizhnikov AA. Predicting Amyloidogenic Proteins in the Proteomes of Plants. Int J Mol Sci 2017; 18:ijms18102155. [PMID: 29035294 PMCID: PMC5666836 DOI: 10.3390/ijms18102155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Amyloids are protein fibrils with characteristic spatial structure. Though amyloids were long perceived to be pathogens that cause dozens of incurable pathologies in humans and mammals, it is currently clear that amyloids also represent a functionally important form of protein structure implicated in a variety of biological processes in organisms ranging from archaea and bacteria to fungi and animals. Despite their social significance, plants remain the most poorly studied group of organisms in the field of amyloid biology. To date, amyloid properties have only been demonstrated in vitro or in heterologous systems for a small number of plant proteins. Here, for the first time, we performed a comprehensive analysis of the distribution of potentially amyloidogenic proteins in the proteomes of approximately 70 species of land plants using the Waltz and SARP (Sequence Analysis based on the Ranking of Probabilities) bioinformatic algorithms. We analyzed more than 2.9 million protein sequences and found that potentially amyloidogenic proteins are abundant in plant proteomes. We found that such proteins are overrepresented among membrane as well as DNA- and RNA-binding proteins of plants. Moreover, seed storage and defense proteins of most plant species are rich in amyloidogenic regions. Taken together, our data demonstrate the diversity of potentially amyloidogenic proteins in plant proteomes and suggest biological processes where formation of amyloids might be functionally important.
Collapse
Affiliation(s)
- Kirill S Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 196608 Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| | - Anton A Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 196608 Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| |
Collapse
|
7
|
Antonets KS, Nizhnikov AA. Amyloids and prions in plants: Facts and perspectives. Prion 2017; 11:300-312. [PMID: 28960135 PMCID: PMC5639834 DOI: 10.1080/19336896.2017.1377875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Amyloids represent protein fibrils that have highly ordered structure with unique physical and chemical properties. Amyloids have long been considered lethal pathogens that cause dozens of incurable diseases in humans and animals. Recent data show that amyloids may not only possess pathogenic properties but are also implicated in the essential biological processes in a variety of prokaryotes and eukaryotes. Functional amyloids have been identified in archaea, bacteria, fungi, and animals, including humans. Plants are one of the most poorly studied groups of organisms in the field of amyloid biology. Although amyloid properties have not been shown under native conditions for any plant protein, studies demonstrating amyloid properties for a set of plant proteins in vitro or in heterologous systems in vivo have been published in recent years. In this review, we systematize the data on the amyloidogenic proteins of plants and their functions and discuss the perspectives of identifying novel amyloids using bioinformatic and proteomic approaches.
Collapse
Affiliation(s)
- K. S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russian Federation
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation
| | - A. A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russian Federation
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
8
|
Highlights on Hevea brasiliensis (pro)hevein proteins. Biochimie 2016; 127:258-70. [DOI: 10.1016/j.biochi.2016.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
|