1
|
Araujo LH, Bueno Chagas TA, Reis T, de Morais Borba JRB, Trujilho MNR, Dalzoto LDAM, Marcondes MF, Juliano MA, Júdice WADS, Veloso MP, Machado MFM. Oximic compounds as potential inhibitors of metacaspase-2 (TbMCA2) of Trypanosoma brucei. Biochem Biophys Res Commun 2024; 735:150657. [PMID: 39265363 DOI: 10.1016/j.bbrc.2024.150657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
Metacaspases are a distinct class of cysteine proteases predominantly found in plants, fungi, and protozoa, crucial for regulating programmed cell death (PCD). They possess unique structural features and differ markedly from caspases in their activation mechanisms and substrate specificities, with a notable preference for binding basic residues in substrates. In this study, we introduced vanillin-derived oximic compounds to explore their pharmaceutical potential. We evaluated these compounds for their inhibitory effects on TbMCA2, a metacaspase in Trypanosoma brucei, identifying AO-7, AO-12, and EO-20 as promising inhibitors. AO-12 showed significant potential as a non-competitive inhibitor with notable IC50 values. Molecular docking studies were also conducted to evaluate the binding affinity of these compounds for TbMCA2. This research is particularly relevant given the urgent need for more effective and less toxic treatments for trypanosomiasis, a parasitic disease caused by trypanosomes. The absence of available vaccines and the limitations imposed by drug toxicity underscore the importance of these findings. Our study represents a significant advancement in developing therapeutic agents targeting metacaspases in trypanosomatids and highlights the necessity of understanding metacaspase regulation across various species. It provides valuable insights into inhibitor sensitivity and potential species-specific therapeutic strategies. In conclusion, this research opens promising avenues for novel therapeutic agents targeting metacaspases in trypanosomatids, addressing a critical gap in combating neglected diseases associated with these pathogens. Further research is essential to refine the efficacy and safety profiles of these compounds, aiming to deliver more accessible and effective therapeutic solutions to populations afflicted by these debilitating diseases.
Collapse
Affiliation(s)
- Laura Helena Araujo
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Thaynan Aparecida Bueno Chagas
- Pharmaceutical Science Department, Alfenas Federal University, Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Brazil
| | - Taiz Reis
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | | | - Mariana Nascimento Romero Trujilho
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Laura de Azevedo Maffeis Dalzoto
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Marcelo Ferreira Marcondes
- Department of Biophysics, São Paulo Federal University, Rua Pedro de Toledo, 669, 7° floor, 04039-032, São Paulo, Brazil
| | - Maria Aparecida Juliano
- Department of Biophysics, São Paulo Federal University, Rua Pedro de Toledo, 669, 7° floor, 04039-032, São Paulo, Brazil
| | - Wagner Alves de Souza Júdice
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Márcia Paranho Veloso
- Pharmaceutical Science Department, Alfenas Federal University, Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Brazil
| | - Maurício Ferreira Marcondes Machado
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil.
| |
Collapse
|
2
|
Dalzoto LDAM, Trujilho MNR, Santos TDR, Costa JPMS, Duarte ACM, Judice WADS, Marcondes MF, Machado MFM. Metacaspase of Saccharomyces cerevisiae (ScMCA-Ia) presents different catalytic cysteine in a processed and non-processed form. Biochem Biophys Res Commun 2023; 687:149185. [PMID: 37951047 DOI: 10.1016/j.bbrc.2023.149185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/13/2023]
Abstract
Metacaspases are cysteine proteases belonging to the CD clan of the C14 family. They possess important characteristics, such as specificity for cleavage after basic residues (Arg/Lys) and dependence on calcium ions to exert their catalytic activity. They are defined by the presence of a large subunit (p20) and a small subunit (p10) and are classified into types I, II, and III. Type I metacaspases have a characteristic pro-domain at the N-terminal of the enzyme, preceding a region rich in glutamine and asparagine. In the yeast Saccharomyces cerevisiae, a type I metacaspase is found. This organism encodes a single metacaspase that participates in the process of programmed cell death by apoptosis. The study focuses on cloning, expressing, and mutating Saccharomyces cerevisiae metacaspase (ScMCA-Ia). Mutations in Cys155 and Cys276 were introduced to investigate autoprocessing mechanisms. Results revealed that Cys155 plays a crucial role in autoprocessing, initiating a conformational change that activates ScMCA-Ia. Comparative analysis with TbMCA-IIa highlighted the significance of the N-terminal region in substrate access to the active site. The study proposes a two-step processing mechanism for type I metacaspases, where an initial processing step generates the active form, followed by a distinct intermolecular processing step. This provides new insights into ScMCA-Ia's activation and function. The findings hold potential implications for understanding cellular processes regulated by metacaspases. Overall, this research significantly advances knowledge in metacaspase biology.
Collapse
Affiliation(s)
- Laura de Azevedo Maffeis Dalzoto
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Mariana Nascimento Romero Trujilho
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Taiz Dos Reis Santos
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - João Pedro Martins Silva Costa
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Ane Caroline Moreira Duarte
- Technological Research Center, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Wagner Alves de Souza Judice
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Marcelo Ferreira Marcondes
- Department of Biophysics, São Paulo Federal University, Rua Pedro de Toledo, 669, 7° floor, 04039-032, São Paulo, Brazil
| | - Maurício Ferreira Marcondes Machado
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil; Technological Research Center, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil.
| |
Collapse
|
3
|
Garcia N, Kalicharan RE, Kinch L, Fernandez J. Regulating Death and Disease: Exploring the Roles of Metacaspases in Plants and Fungi. Int J Mol Sci 2022; 24:ijms24010312. [PMID: 36613753 PMCID: PMC9820594 DOI: 10.3390/ijms24010312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Identified over twenty years ago and distantly related to animal caspases are a group of cysteine proteases known as metacaspases. Throughout the years, much like caspase roles in metazoans, metacaspases have been shown to be involved in regulating cellular death in non-metazoan organisms. Yet, continued research on metacaspases describes these proteins as intricate and multifunctional, displaying striking diversity on distinct biological functions. In this review, we intend to describe the recent advances in our understanding of the divergence of metacaspase functionality in plants and fungi. We will dissect the duality of metacaspase activity in the context of plant-pathogen interactions, providing a unique lens from which to characterize metacaspases in the development, immunity, and stress responses of plants, and the development and virulence of fungi. Furthermore, we explore the evolutionary trajectory of fungal metacaspases to delineate their structure and function. Bridging the gap between metacaspase roles in immunity and pathogenicity of plant-pathogen interactions can enable more effective and targeted phytopathogen control efforts to increase production of globally important food crops. Therefore, the exploitation and manipulation of metacaspases in plants or fungi represent new potential avenues for developing mitigation strategies against plant pathogens.
Collapse
Affiliation(s)
- Nalleli Garcia
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Rachel E. Kalicharan
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Lisa Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jessie Fernandez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
- Correspondence:
| |
Collapse
|
4
|
Conchou L, Doumèche B, Galisson F, Violot S, Dugelay C, Diesis E, Page A, Bienvenu AL, Picot S, Aghajari N, Ballut L. Structural and molecular determinants of Candida glabrata metacaspase maturation and activation by calcium. Commun Biol 2022; 5:1158. [PMID: 36316540 PMCID: PMC9622860 DOI: 10.1038/s42003-022-04091-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Metacaspases are caspase-like homologs which undergo a complex maturation process involving multiple intra-chain cleavages resulting in a composite enzyme made of a p10 and a p20 domain. Their proteolytic activity involving a cysteine-histidine catalytic dyad, show peptide bond cleavage specificity in the C-terminal to lysine and arginine, with both maturation- and catalytic processes being calcium-dependent. Here, we present the structure of a metacaspase from the yeast Candida glabrata, CgMCA-I, in complex with a unique calcium along with a structure in which three magnesium ions are bound. We show that the Ca2+ ion interacts with a loop in the vicinity of the catalytic site. The reorganization of this cation binding loop, by bringing together the two catalytic residues, could be one of the main structural determinants triggering metacaspase activation. Enzymatic exploration of CgMCA-I confirmed that the maturation process implies a trans mechanism with sequential cleavages. Structural and functional analyses of yeast metacaspase reveal unique Ca2+ and Mg2+ binding sites and provide insights into Ca2+-dependent maturation of metacaspases along with the inhibitory effects of Mg2+ and Zn2+.
Collapse
Affiliation(s)
- Léa Conchou
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| | - Bastien Doumèche
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaire, ICBMS UMR 5246, CNRS, F-69622 Lyon, France
| | - Frédéric Galisson
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| | - Sébastien Violot
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| | - Chloé Dugelay
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| | - Eric Diesis
- grid.15140.310000 0001 2175 9188University of Lyon, INSERM, ENS Lyon, CNRS, Protein Science Facility, SFR BioSciences, UAR3444/US8, F-69366 Lyon, France
| | - Adeline Page
- grid.15140.310000 0001 2175 9188University of Lyon, INSERM, ENS Lyon, CNRS, Protein Science Facility, SFR BioSciences, UAR3444/US8, F-69366 Lyon, France
| | - Anne-Lise Bienvenu
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaire, ICBMS UMR 5246, CNRS, F-69622 Lyon, France ,grid.413852.90000 0001 2163 3825Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, F-69004 Lyon, France
| | - Stéphane Picot
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaire, ICBMS UMR 5246, CNRS, F-69622 Lyon, France ,grid.413306.30000 0004 4685 6736Institute of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, F-69004 Lyon, France
| | - Nushin Aghajari
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| | - Lionel Ballut
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| |
Collapse
|
5
|
Cysteine proteases as potential targets for anti-trypanosomatid drug discovery. Bioorg Med Chem 2021; 46:116365. [PMID: 34419821 DOI: 10.1016/j.bmc.2021.116365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Leishmaniasis and trypanosomiasis are endemic neglected disease in South America and Africa and considered a significant public health problem, mainly in poor communities. The limitations of the current available therapeutic options, including the lack of specificity, relatively high toxicity, and the drug resistance acquiring, drive the constant search for new targets and therapeutic options. Advances in knowledge of parasite biology have revealed essential enzymes involved in the replication, survival, and pathogenicity of Leishmania and Trypanosoma species. In this scenario, cysteine proteases have drawn the attention of researchers and they are being proposed as promising targets for drug discovery of antiprotozoal drugs. In this systematic review, we will provide an update on drug discovery strategies targeting the cysteine proteases as potential targets for chemotherapy against protozoal neglected diseases.
Collapse
|
6
|
van Midden KP, Peric T, Klemenčič M. Plant type I metacaspases are proteolytically active proteases despite their hydrophobic nature. FEBS Lett 2021; 595:2237-2247. [PMID: 34318487 DOI: 10.1002/1873-3468.14165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022]
Abstract
Plant metacaspases type I (MCA-Is), the closest structural homologs of caspases, are key proteases in stress-induced regulated cell death processes in plants. However, no plant MCA-Is have been characterized in vitro to date. Here, we show that only plant MCA-Is contain a highly hydrophobic loop within the C terminus of their p10 domain. When removed, soluble and proteolytically active plant MCA-Is can be designed and recombinantly produced. We show that the activity of MCA-I depends on calcium ions and that removal of the hydrophobic loop does not affect cleavage and covalent binding to its inhibitor SERPIN. This novel approach will finally allow the development of tools to detect and manipulate the activity of these cysteine proteases in vivo and in planta.
Collapse
Affiliation(s)
- Katarina Petra van Midden
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Tanja Peric
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| |
Collapse
|
7
|
Update on relevant trypanosome peptidases: Validated targets and future challenges. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140577. [PMID: 33271348 DOI: 10.1016/j.bbapap.2020.140577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Trypanosoma cruzi, the agent of the American Trypanosomiasis, Chagas disease, and Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, the agents of Sleeping sickness (Human African Trypanosomiasis, HAT), as well as Trypanosoma brucei brucei, the agent of the cattle disease nagana, contain cysteine, serine, threonine, aspartyl and metallo peptidases. The most abundant among these enzymes are the cysteine proteases from the Clan CA, the Cathepsin L-like cruzipain and rhodesain, and the Cathepsin B-like enzymes, which have essential roles in the parasites and thus are potential targets for chemotherapy. In addition, several other proteases, present in one or both parasites, have been characterized, and some of them are also promising candidates for the developing of new drugs. Recently, new inhibitors, with good selectivity for the parasite proteasomes, have been described and are very promising as lead compounds for the development of new therapies for these neglected diseases. This article is part of a Special Issue entitled: "Play and interplay of proteases in health and disease".
Collapse
|
8
|
Eyssen LEA, Coetzer TH. Validation of ligands targeting metacaspase-2 (MCA2) from Trypanosoma brucei brucei and their application to MCA5 from T. congolense as possible trypanocides. J Mol Graph Model 2020; 97:107579. [PMID: 32197135 DOI: 10.1016/j.jmgm.2020.107579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 11/29/2022]
Abstract
Metacaspases (MCAs) are ideal drug and diagnostic targets for animal and human African trypanosomiasis, as these cysteine peptidases are absent from the metazoan kingdom and have been implicated in the parasite cell cycle and cell death. Tsetse fly-transmitted trypanosomes that live free in the bloodstream and/or cerebrospinal fluid of the mammalian host cause animal and human African trypanosomiasis (nagana or sleeping sickness respectively). Chemotherapy and chemoprophylaxis are the main forms of control, but in contrast to human trypanocides, the veterinary drugs are old and drug resistance is on the increase. A peptidomimetic library targeting the MCA2 from Trypanosoma brucei brucei has ligands with low IC50 values, some of which were antiparasitic. This study validates the inhibitory activity of these ligands using the protein structure solved by X-ray diffraction after the ligand library was published. Water molecules were shown to be important in substrate binding and strategies to improve the efficacy of these ligands are highlighted. These ligands appear to be pan-specific as they were docked into the active site of the homology modelled MCA5 of animal infective Trypanosoma congolense with similar binding energies and conformations.
Collapse
Affiliation(s)
- L E-A Eyssen
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa
| | - Theresa Ht Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
9
|
Leang L, McDonald MC, Mineo CR, Jones B, Barker T, Gagliardi C, Fox KM. Identification and characterization of Schizophyllum commune type I metacaspases. Biochem Biophys Rep 2019; 20:100706. [PMID: 31844687 PMCID: PMC6895675 DOI: 10.1016/j.bbrep.2019.100706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 11/18/2022] Open
Abstract
The role of programmed cell death in filamentous fungi is not well-understood, but is important due to the role of fungi in opportunistic infections. Plants, fungi and protozoa do not have caspase genes, but instead express the homologous proteins denoted metacaspases. To better understand the role of metacaspases in fungi we present an analysis of the sequences and activities of all five Type I metacaspases from Schizophyllum commune (ScMC), a mushroom-forming basiodmycete that undergoes sexual reproduction. The five Type I metacaspases of S. commune can be divided into two groups based on sequence similarity. Enzymes both with and without the N-terminal prodomain are active, but here we report on the constructs without the prodomains (Δpro). All five ScMCΔpro proteins show the highest enzymatic activity between pH 7 and 8 and require calcium for optimal activity. Optimal Ca2+ concentrations for ScMC1Δpro and ScMC2Δpro are 50 mM, while ScMC3, ScMC4Δpro and ScMC5Δpro activity is optimal around 5 mM calcium. All five S. commune metacaspases have similar substrate specificity. They are most active with Arg in the P1 position and inactive with Asp in the P1 position.
Collapse
|
10
|
Eyssen LEA, Coetzer THT. Expression, purification and characterisation of Trypanosoma congolense metacaspase 5 (TcoMCA5) - a potential drug target for animal African trypanosomiasis. Protein Expr Purif 2019; 164:105465. [PMID: 31377239 DOI: 10.1016/j.pep.2019.105465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 01/25/2023]
Abstract
The metacaspases (MCAs) are attractive drug targets for the treatment of African trypanosomiasis as they are not found in the metazoan kingdom and their action has been implicated in cell cycle and cell death pathways in kinetoplastid parasites. Here we report the biochemical characterisation of MCA5 from T. congolense. Upon recombinant expression in E. coli, autoprocessing is evident, and MCA5 further autoprocesses when purified using nickel affinity chromatography, which we term nickel-induced over autoprocessing. When both the catalytic His and Cys residues were mutated (TcoMCA5H147A/C202G), no nickel-induced over autoprocessing was observed and was enzymatically active, suggesting the existence of a secondary catalytic Cys residue, Cys81. Immunoaffinity purification of native TcoMCA5 from the total parasite proteins was achieved using chicken anti-TcoMCA5 IgY antibodies. The full length native TcoMCA5 and the autoprocessed products of recombinant TcoMCA5H147A/C202G were shown to possess gelatinolytic activity, the first report for that of a MCA. Both the native and recombinant enzyme were calcium independent, had a preference for Arg over Lys at the P1 site and were active over a pH range between 6.5 and 9. Partial inhibition (23%) of enzymatic activity was only achieved with leupeptin and antipain. These findings are the first step in the biochemical characterisation of the single copy MCAs from animal infective trypanosomes towards the design of novel trypanocides.
Collapse
Affiliation(s)
- Lauren E-A Eyssen
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa
| | - Theresa H T Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
11
|
Klemenčič M, Funk C. Evolution and structural diversity of metacaspases. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2039-2047. [PMID: 30921456 DOI: 10.1093/jxb/erz082] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Caspases are metazoan proteases, best known for their involvement in programmed cell death in animals. In higher plants genetically controlled mechanisms leading to the selective death of individual cells also involve the regulated interplay of various types of proteases. Some of these enzymes are structurally homologous to caspases and have therefore been termed metacaspases. In addition to the two well-studied metacaspase variants found in higher plants, type I and type II, biochemical data have recently become available for metacaspases of type III and metacaspase-like proteases, which are present only in certain algae. Although increasing in vitro and in vivo data suggest the existence of further sub-types, a lack of structural information hampers the interpretation of their distinct functional properties. However, the identification of key amino acid residues involved in the proteolytic mechanism of metacaspases, as well as the increased availability of plant genomic and transcriptomic data, is increasingly enabling in-depth analysis of all metacaspase types found in plastid-containing organisms. Here, we review the structural distribution and diversification of metacaspases and in doing so try to provide comprehensive guidelines for further analyses of this versatile family of proteases in organisms ranging from simple unicellular species to flowering plants.
Collapse
Affiliation(s)
- Marina Klemenčič
- Department of Chemistry, Umeå University, Umeå, Sweden
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot, Ljubljana, Slovenia
| | | |
Collapse
|
12
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
13
|
de Castro E, Reus TL, de Aguiar AM, Ávila AR, de Arruda Campos Brasil de Souza T. Procaspase-activating compound-1 induces apoptosis in Trypanosoma cruzi. Apoptosis 2018; 22:1564-1577. [PMID: 29058102 DOI: 10.1007/s10495-017-1428-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Some therapeutics for parasitic, cardiac and neurological diseases activate apoptosis. Therefore, the study of apoptotic proteins in pathogenic organisms is relevant. However, the molecular mechanism of apoptosis in unicellular organisms remain elusive, despite morphological evidence of its occurrence. In Trypanosoma cruzi, the causative agent of Chagas disease, metacaspase 3 (TcMCA3), seems to have a key role in parasite apoptosis. Accordingly, this work provides data concerning TcMCA3 regulation through its interaction with procaspase-activating compound 1 (PAC-1), a procaspase 3 activator. Indeed, PAC-1 reduced T. cruzi epimastigote viability with an IC50 of 14.12 µM and induced loss of mitochondrial potential and exposure of phosphatidylserine, features of the apoptotic process. Notwithstanding, those PAC-1-inducible effects were not conserved in metacyclic trypomastigotes. Moreover, PAC-1 reduced the viability of mammalian cells with a greater IC50 (25.70 µM) compared to T. cruzi epimastigotes, indicating distinct modes of binding between caspases and metacaspases. To shed light on the selectivity of metacaspases and caspases, we determined the structural features related to the PAC-1 binding sites in both types of proteins. These data are important for improving the understanding of the apoptosis pathway in T. cruzi so that TcMCA3 could be better targeted with future pharmaceuticals.
Collapse
Affiliation(s)
- Emanuella de Castro
- Laboratório de Proteômica e Engenharia de Proteínas, Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil
| | - Thamile Luciane Reus
- Laboratório de Biologia Básica de Células Tronco, Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brazil
| | - Alessandra Melo de Aguiar
- Laboratório de Biologia Básica de Células Tronco, Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brazil
| | - Andrea Rodrigues Ávila
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brazil
| | | |
Collapse
|