1
|
Guo L, Xia Y, Li H, Wang Z, Xu H, Dai X, Zhang Y, Zhang H, Fan W, Wei F, Li Q, Zhang L, Cao L, Zhang S, Hu W, Gu H. FIT links c-Myc and P53 acetylation by recruiting RBBP7 during colorectal carcinogenesis. Cancer Gene Ther 2023; 30:1124-1133. [PMID: 37225855 DOI: 10.1038/s41417-023-00624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/07/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Colorectal cancer (CRC) poses one of the most serious threats to human health worldwide, and abnormally expressed c-Myc and p53 are deemed the pivotal driving forces of CRC progression. In this study, we discovered that the lncRNA FIT, which was downregulated in CRC clinical samples, was transcriptionally suppressed by c-Myc in vitro and promoted CRC cell apoptosis by inducing FAS expression. FAS is a p53 target gene, and we found that FIT formed a trimer with RBBP7 and p53 that facilitated p53 acetylation and p53-mediated FAS gene transcription. Moreover, FIT was capable of retarding CRC growth in a mouse xenograft model, and FIT expression was positively correlated with FAS expression in clinical samples. Thus, our study elucidates the role of the lncRNA FIT in human colorectal cancer growth and provides a potential target for anti-CRC drugs.
Collapse
Affiliation(s)
- Lili Guo
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yang Xia
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hao Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zifei Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hui Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xiangyu Dai
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yaqin Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenhu Fan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Feng Wei
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qun Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ling Zhang
- Department of Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Limian Cao
- Department of Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shangxin Zhang
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Wanglai Hu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou, China.
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Dave N, Vural AS, Piras IS, Winslow W, Surendra L, Winstone JK, Beach TG, Huentelman MJ, Velazquez R. Identification of retinoblastoma binding protein 7 (Rbbp7) as a mediator against tau acetylation and subsequent neuronal loss in Alzheimer's disease and related tauopathies. Acta Neuropathol 2021; 142:279-294. [PMID: 33978814 PMCID: PMC8270842 DOI: 10.1007/s00401-021-02323-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022]
Abstract
Evidence indicates that tau hyper-phosphorylation and subsequent neurofibrillary tangle formation contribute to the extensive neuronal death in Alzheimer's disease (AD) and related tauopathies. Recent work has identified that increased tau acetylation can promote tau phosphorylation. Tau acetylation occurs at lysine 280 resulting from increased expression of the lysine acetyltransferase p300. The exact upstream mechanisms mediating p300 expression remain elusive. Additional work highlights the role of the epigenome in tau pathogenesis, suggesting that dysregulation of epigenetic proteins may contribute to acetylation and hyper-phosphorylation of tau. Here, we identify and focus on the histone-binding subunit of the Nucleosome Remodeling and Deacetylase (NuRD) complex: Retinoblastoma-Binding Protein 7 (Rbbp7). Rbbp7 chaperones chromatin remodeling proteins to their nuclear histone substrates, including histone acetylases and deacetylases. Notably, Rbbp7 binds to p300, suggesting that it may play a role in modulating tau acetylation. We interrogated Rbbp7 in post-mortem brain tissue, cell lines and mouse models of AD. We found reduced Rbbp7 mRNA expression in AD cases, a significant negative correlation with CERAD (neuritic plaque density) and Braak Staging (pathogenic tau inclusions) and a significant positive correlation with post-mortem brain weight. We also found a neuron-specific downregulation of Rbbp7 mRNA in AD patients. Rbbp7 protein levels were significantly decreased in 3xTg-AD and PS19 mice compared to NonTg, but no decreases were found in APP/PS1 mice that lack tau pathology. In vitro, Rbbp7 overexpression rescued TauP301L-induced cytotoxicity in immortalized hippocampal cells and primary cortical neurons. In vivo, hippocampal Rbbp7 overexpression rescued neuronal death in the CA1 of PS19 mice. Mechanistically, we found that increased Rbbp7 reduced p300 levels, tau acetylation at lysine 280 and tau phosphorylation at AT8 and AT100 sites. Collectively, these data identify a novel role of Rbbp7, protecting against tau-related pathologies, and highlight its potential as a therapeutic target in AD and related tauopathies.
Collapse
Affiliation(s)
- Nikhil Dave
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Austin S Vural
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Wendy Winslow
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Likith Surendra
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Joanna K Winstone
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Thomas G Beach
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Ramon Velazquez
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
3
|
Leighton G, Williams DC. The Methyl-CpG-Binding Domain 2 and 3 Proteins and Formation of the Nucleosome Remodeling and Deacetylase Complex. J Mol Biol 2019:S0022-2836(19)30599-6. [PMID: 31626804 DOI: 10.1016/j.jmb.2019.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
Abstract
The Nucleosome Remodeling and Deacetylase (NuRD) complex uniquely combines both deacetylase and remodeling enzymatic activities in a single macromolecular complex. The methyl-CpG-binding domain 2 and 3 (MBD2 and MBD3) proteins provide a critical structural link between the deacetylase and remodeling components, while MBD2 endows the complex with the ability to selectively recognize methylated DNA. Hence, NuRD combines three major arms of epigenetic gene regulation. Research over the past few decades has revealed much of the structural basis driving formation of this complex and started to uncover the functional roles of NuRD in epigenetic gene regulation. However, we have yet to fully understand the molecular and biophysical basis for methylation-dependent chromatin remodeling and transcription regulation by NuRD. In this review, we discuss the structural information currently available for the complex, the role MBD2 and MBD3 play in forming and recruiting the complex to methylated DNA, and the biological functions of NuRD.
Collapse
Affiliation(s)
- Gage Leighton
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
O’Beirne SL, Shenoy SA, Salit J, Strulovici-Barel Y, Kaner RJ, Visvanathan S, Fine JS, Mezey JG, Crystal RG. Ambient Pollution-related Reprogramming of the Human Small Airway Epithelial Transcriptome. Am J Respir Crit Care Med 2018; 198:1413-1422. [PMID: 29897792 PMCID: PMC6290954 DOI: 10.1164/rccm.201712-2526oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/12/2018] [Indexed: 01/25/2023] Open
Abstract
RATIONALE Epidemiologic studies have demonstrated that exposure to particulate matter ambient pollution has adverse effects on lung health, exacerbated by cigarette smoking. Particulate matter less than or equal to 2.5 μm in aerodynamic diameter (PM2.5) is among the most harmful urban pollutants and is closely linked to respiratory disease. OBJECTIVES Based on the knowledge that the small airway epithelium (SAE) plays a central role in the pathogenesis of smoking-related lung disease, we hypothesized that elevated PM2.5 levels are associated with dysregulation of SAE gene expression, which may contribute to the development of respiratory disease. METHODS From 2009 to 2012, healthy nonsmoker (n = 29) and smoker (n = 129) residents of New York City underwent bronchoscopy with SAE brushing (2.6 ± 1.3 samples/subject; total of 405 samples). SAE gene expression was assessed by Affymetrix HG-U133 Plus 2.0 microarray. New York City PM2.5 levels (Environmental Protection Agency data) were averaged for the 30 days before bronchoscopy. A linear mixed model was used to assess PM2.5-related gene dysregulation accounting for multiple clinical and methodologic variables. MEASUREMENTS AND MAIN RESULTS Thirty-day mean PM2.5 levels varied from 6.2 to 18 μg/m3. In nonsmokers, there was no dysregulation of SAE gene expression associated with ambient PM2.5 levels. In marked contrast, n = 219 genes were significantly dysregulated in association with PM2.5 levels in the SAE of smokers. Many of these genes relate to cell growth and transcription regulation. Interestingly, 11% of genes were mitochondria associated. CONCLUSIONS PM2.5 exposure contributes to significant dysregulation of the SAE transcriptome of smokers, linking pollution and airway epithelial biology in the risk of development of respiratory disease in susceptible individuals.
Collapse
Affiliation(s)
- Sarah L. O’Beirne
- Department of Genetic Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | | | | | - Robert J. Kaner
- Department of Genetic Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | | | - Jason G. Mezey
- Department of Genetic Medicine and
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York
| | - Ronald G. Crystal
- Department of Genetic Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
5
|
Ginder GD, Williams DC. Readers of DNA methylation, the MBD family as potential therapeutic targets. Pharmacol Ther 2017; 184:98-111. [PMID: 29128342 DOI: 10.1016/j.pharmthera.2017.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA methylation represents a fundamental epigenetic modification that regulates chromatin architecture and gene transcription. Many diseases, including cancer, show aberrant methylation patterns that contribute to the disease phenotype. DNA methylation inhibitors have been used to block methylation dependent gene silencing to treat hematopoietic neoplasms and to restore expression of developmentally silenced genes. However, these inhibitors disrupt methylation globally and show significant off-target toxicities. As an alternative approach, we have been studying readers of DNA methylation, the 5-methylcytosine binding domain family of proteins, as potential therapeutic targets to restore expression of aberrantly and developmentally methylated and silenced genes. In this review, we discuss the role of DNA methylation in gene regulation and cancer development, the structure and function of the 5-methylcytosine binding domain family of proteins, and the possibility of targeting the complexes these proteins form to treat human disease.
Collapse
Affiliation(s)
- Gordon D Ginder
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|