1
|
Arifova L, MacTavish BS, Laughlin Z, Giridhar MNK, Shang J, Li MH, Yu X, Zhu D, Kamenecka TM, Kojetin DJ. Shifting the PPARγ conformational ensemble towards a transcriptionally repressive state improves covalent inhibitor efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.640448. [PMID: 40093152 PMCID: PMC11908191 DOI: 10.1101/2025.03.04.640448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) regulates transcription in response to ligand binding at an orthosteric pocket within the ligand-binding domain (LBD). We previously showed that two covalent ligands, T0070907 and GW9662-extensively used as PPARγ inhibitors to assess off-target activity-weaken but do not completely block ligand binding via an allosteric mechanism associated with pharmacological inverse agonism (Shang et al., 2024). These covalent inhibitors shift the LBD towards a repressive conformation, where the activation function-2 (AF-2) helix 12 occupies the orthosteric pocket, competing with orthosteric ligand binding. Here, we provide additional support for this allosteric mechanism using two covalent inverse agonists, SR33065 and SR36708, which better stabilize the repressive LBD conformation and are more effective inhibitors of-but also do not completely inhibit-ligand cobinding. Furthermore, we show that ligand cobinding can occur with a previously reported PPARγ dual-site covalent inhibitor, SR16832, which appears to weaken ligand binding through a direct mechanism independent of the allosteric mechanism. These findings underscore the complex nature of the PPARγ LBD conformational ensemble and highlight the need to develop alternative methods for designing more effective covalent inhibitors.
Collapse
Affiliation(s)
- Liudmyla Arifova
- Undergraduate Program in Biochemistry and Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Brian S. MacTavish
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
| | - Zane Laughlin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | | | - Jinsai Shang
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou
| | - Min-Hsuan Li
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Xiaoyu Yu
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Di Zhu
- Department of Molecular Medicine, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
| | - Theodore M. Kamenecka
- Department of Molecular Medicine, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
| | - Douglas J. Kojetin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
2
|
Liu L, Song FH, Gao SJ, Wu JY, Li DY, Zhang LQ, Zhou YQ, Liu DQ, Mei W. Peroxisome proliferator-activated receptor gamma: A promising therapeutic target for the treatment of chronic pain. Brain Res 2025; 1850:149366. [PMID: 39617285 DOI: 10.1016/j.brainres.2024.149366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Chronic pain represents an incapacitating medical condition that profoundly impacts the patients' quality of life. Managing chronic pain poses a significant challenge for healthcare professionals due to its multifaceted nature and the limited effectiveness of current treatment options. Therefore, novel therapeutic interventions are crucially required for the management of chronic pain. Peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor, exerts regulatory effects on physiological processes such as glucose and lipid metabolism. Emerging studies demonstrate that PPARγ is a critical regulator of the expression of various genes, including those of anti-inflammatory cytokines and antioxidant enzymes. Substantial evidence indicates decreased expression of PPARγ in the sciatic nerve, dorsal root ganglia, and spinal cord dorsal horn in animal models of chronic pain. Furthermore, natural or synthetic PPARγ agonists had inhibitory effects on nociceptive hypersensitivity in various animal models of chronic pain. This review summarizes and discusses preclinical evidence demonstrating the therapeutic potential of PPARγ agonists in chronic pain management. The available evidence indicates that PPARγ activation reduces chronic pain by inhibiting neuroinflammation and oxidative stress as well as modulation of opioidergic system. Overall, the use of PPARγ agonists is a promising therapeutic approach for treating chronic pain; however, further research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Lin Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Fan-He Song
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Shao-Jie Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jia-Yi Wu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Dan-Yang Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Long-Qing Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
3
|
Chen F, Ma L, Liu Q, Zhou Z, Yi W. Recent advances and therapeutic applications of PPARγ-targeted ligands based on the inhibition mechanism of Ser273 phosphorylation. Metabolism 2025; 163:156097. [PMID: 39637972 DOI: 10.1016/j.metabol.2024.156097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
PPARγ functions as a master ligand-dependent transcription factor that regulates the expressions of a variety of key genes related to metabolic homeostasis and inflammatory immunity. It has been recognized as a popular and druggable target in modern drug discovery. Similar to other nuclear receptors, PPARγ is a phosphoprotein, and its biological functions are regulated by phosphorylation, especially at Ser273 site which is mediated by CDK5 or ERK. In the past decade, the excessive level of PPARγ-Ser273 phosphorylation has been confirmed to be a crucial factor in promoting the occurrence and development of some major diseases. Ligands capable of inhibiting PPARγ-Ser273 phosphorylation have shown great potentials for treatment. Despite these achievements, to our knowledge, no related review focusing on this topic has been conducted so far. Therefore, we herein summarize the basic knowledge of PPARγ and CDK5/ERK-mediated PPARγ-Ser273 phosphorylation as well as its physiopathological role in representative diseases. We also review the developments and therapeutic applications of PPARγ-targeted ligands based on this mechanism. Finally, we suggest several directions for future investigations. We expect that this review can evoke more inspiration of scientific communities, ultimately facilitating the promotion of the PPARγ-Ser273 phosphorylation-involved mechanism as a promising breakthrough point for addressing the clinical treatment of human diseases.
Collapse
Affiliation(s)
- Fangyuan Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Lei Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Qingmei Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
4
|
Shang J, Kojetin DJ. Unanticipated mechanisms of covalent inhibitor and synthetic ligand cobinding to PPARγ. eLife 2024; 13:RP99782. [PMID: 39556436 PMCID: PMC11573348 DOI: 10.7554/elife.99782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous and synthetic ligands, including covalent antagonist inhibitors GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent inhibitors weaken-but do not prevent-the binding of other ligands via an allosteric mechanism, rather than direct ligand clashing, by shifting the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with orthosteric ligand binding. Crystal structures reveal different cobinding mechanisms including alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent inhibitor binding pose. Our findings highlight the significant flexibility of the PPARγ orthosteric pocket, its ability to accommodate multiple ligands, and demonstrate that GW9662 and T0070907 should not be used as chemical tools to inhibit ligand binding to PPARγ.
Collapse
Affiliation(s)
- Jinsai Shang
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterUnited States
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical UniversityGuangzhouChina
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterUnited States
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashvilleUnited States
- Center for Applied AI in Protein Dynamics, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
5
|
Ma L, Tang J, Chen F, Liu Q, Huang J, Liu X, Zhou Z, Yi W. Structure-based screening, optimization and biological evaluation of novel chrysin-based derivatives as selective PPARγ modulators for the treatment of T2DM and hepatic steatosis. Eur J Med Chem 2024; 276:116728. [PMID: 39089002 DOI: 10.1016/j.ejmech.2024.116728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
In consideration of several serious side effects induced by the classical AF-2 involved "lock" mechanism, recently disclosed PPARγ-Ser273 phosphorylation mode of action has become an alternative and mainstream mechanism for currently PPARγ-based drug discovery and development with an improved therapeutic index. In this study, by virtue of structure-based virtual high throughput screening (SB-VHTS), structurally chemical optimization by targeting the inhibition of the PPARγ-Ser273 phosphorylation as well as in vitro biological evaluation, which led to the final identification of a chrysin-based potential hit (YGT-31) as a novel selective PPARγ modulator with potent binding affinity and partial agonism. Further in vivo evaluation demonstrated that YGT-31 possessed potent glucose-lowering and relieved hepatic steatosis effects without involving the TZD-associated side effects. Mechanistically, YGT-31 presented such desired therapeutic index, mainly because it effectively inhibited the CDK5-mediated PPARγ-Ser273 phosphorylation, selectively elevated the level of insulin sensitivity-related Glut4 and adiponectin but decreased the expression of insulin-resistance-associated genes PTP1B and SOCS3 as well as inflammation-linked genes IL-6, IL-1β and TNFα. Finally, the molecular docking study was also conducted to uncover an interesting hydrogen-bonding network of YGT-31 with PPARγ-Ser273 phosphorylation-related key residues Ser342 and Glu343, which not only gave a clear verification for our targeting modification but also provided a proof of concept for the abovementioned molecular mechanism.
Collapse
Affiliation(s)
- Lei Ma
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Junyuan Tang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China; Department of Food and Chemical Engineering, Shaoyang University, Shao Shui Xi Road, Shaoyang, 422100, China
| | - Fangyuan Chen
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Qingmei Liu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Junjun Huang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Xiawen Liu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Zhi Zhou
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Wei Yi
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| |
Collapse
|
6
|
Lai WJ, Lu JH, Chen WH, Jiang LH, Shen LQ. Antioxidant Mechanism, Spectroscopic and Pharmacological Properties of Four Flavonoids: DFT, Docking and Molecular Dynamics. Chem Biodivers 2024; 21:e202400752. [PMID: 38923373 DOI: 10.1002/cbdv.202400752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Myricetin (1), Quercetin (2), Kaempferol (3) and Kaempferide (4) were flavonoids with phenolic hydroxyl groups. The antioxidant and pharmacological mechanisms of them were investigated in detail. The lowest hydroxyl dissociation enthalpies of 1, 2, 3 and 4 were calculated by DFT, respectively. The hydroxyl dissociation enthalpies of the four flavonoids at the O2 site are the highest. By analyzing the intramolecular hydrogen bonds and HOMO-LUMO orbitals of the four flavonoids, the reasons for their divergence of hydroxyl dissociation enthalpies and antioxidant mechanisms were further investigated. The UV-vis and IR spectra of four flavonoids were compared. The interactions about electrostatic attraction, p-π conjugation and hydrogen bond combined the flavonoid with the target protein closely. The root mean square deviation of peroxisome proliferator-activated receptor γ combined with 1, 2 and 3 increased, while that of PPARγ combined with 4 decreased.
Collapse
Affiliation(s)
- Wu-Ji Lai
- College of Architecture and Environment, Sichuan University, 610065, Chengdu, China
| | - Jia-Hao Lu
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, 530006, Nanning, China
| | - Wen-Hao Chen
- POWERCHINA Chengdu Engineering Corporation Limited, 610072, Chengdu, China
| | - Li-He Jiang
- Medical College, Guangxi University, 530006, Nanning, China
| | - Li-Qun Shen
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, 530006, Nanning, China
- Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, 530006, Nanning, China
| |
Collapse
|
7
|
Shang J, Kojetin DJ. Unanticipated mechanisms of covalent inhibitor and synthetic ligand cobinding to PPARγ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594037. [PMID: 38798544 PMCID: PMC11118368 DOI: 10.1101/2024.05.15.594037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous lipids and synthetic ligands, including covalent antagonist inhibitors such as GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent antagonist inhibitors weaken-but do not prevent-the binding of other synthetic ligands via an allosteric mechanism rather than direct ligand clashing. The covalent ligands shift the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with and reduces the orthosteric binding affinity of non-covalent synthetic ligands. Crystal structures reveal different non-covalent synthetic ligand-specific cobinding mechanisms ranging from alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent ligand binding pose. Our findings not only highlight the significant flexibility of the PPARγ orthosteric pocket and its ability to accommodate multiple ligands simultaneously, but also demonstrate that GW9662 and T0070907 should not be used as reliable chemical tools to inhibit the binding of other ligands to PPARγ.
Collapse
Affiliation(s)
- Jinsai Shang
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Douglas J. Kojetin
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
8
|
Laghezza A, Cerchia C, Genovese M, Montanari R, Capelli D, Wackerlig J, Simic S, Falbo E, Pecora L, Leuci R, Brunetti L, Piemontese L, Tortorella P, Biswas A, Singh RP, Tambe S, Sudeep CA, Pattnaik AK, Jayaprakash V, Paoli P, Lavecchia A, Loiodice F. A chemical modification of a peroxisome proliferator-activated receptor pan agonist produced a shift to a new dual alpha/gamma partial agonist endowed with mitochondrial pyruvate carrier inhibition and antidiabetic properties. Eur J Med Chem 2024; 275:116567. [PMID: 38865743 DOI: 10.1016/j.ejmech.2024.116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
New analogs of the PPAR pan agonist AL29-26 encompassed ligand (S)-7 showing potent activation of PPARα and -γ subtypes as a partial agonist. In vitro experiments and docking studies in the presence of PPAR antagonists were performed to help interpretation of biological data and investigate the main interactions at the binding sites. Further in vitro experiments showed that (S)-7 induced anti-steatotic effects and enhancement of the glucose uptake. This latter effect could be partially ascribed to a significant inhibition of the mitochondrial pyruvate carrier demonstrating that (S)-7 also acted through insulin-independent mechanisms. In vivo experiments showed that this compound reduced blood glucose and lipid levels in a diabetic mice model displaying no toxicity on bone, kidney, and liver. To our knowledge, this is the first example of dual PPARα/γ partial agonist showing these combined effects representing, therefore, the potential lead of new drugs for treatment of dyslipidemic type 2 diabetes.
Collapse
Affiliation(s)
- Antonio Laghezza
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Carmen Cerchia
- Dipartimento di Farmacia, "Drug Discovery" Laboratory, Università degli Studi di Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy
| | - Massimo Genovese
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Judith Wackerlig
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090, Vienna, Austria
| | - Stefan Simic
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090, Vienna, Austria
| | - Emanuele Falbo
- Dipartimento di Farmacia, "Drug Discovery" Laboratory, Università degli Studi di Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy
| | - Lucia Pecora
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy
| | - Rosalba Leuci
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Leonardo Brunetti
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Luca Piemontese
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Paolo Tortorella
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Abanish Biswas
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Suhas Tambe
- Adgyl Lifescience Private Ltd., Bengaluru, 560058, India
| | - C A Sudeep
- Bioanalytical Section, Eurofins Advinus Biopharma Services India Pvt Ltd., Bengaluru, 560058, India
| | - Ashok Kumar Pattnaik
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Paolo Paoli
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy
| | - Antonio Lavecchia
- Dipartimento di Farmacia, "Drug Discovery" Laboratory, Università degli Studi di Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy.
| | - Fulvio Loiodice
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
9
|
Agosta F, Cozzini P. A Combined Molecular Dynamics and Hydropathic INTeraction (HINT) Approach to Investigate Protein Flexibility: The PPARγ Case Study. Molecules 2024; 29:2234. [PMID: 38792097 PMCID: PMC11124508 DOI: 10.3390/molecules29102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Molecular Dynamics (MD) is a computational technique widely used to evaluate a molecular system's thermodynamic properties and conformational behavior over time. In particular, the energy analysis of a protein conformation ensemble produced though MD simulations plays a crucial role in explaining the relationship between protein dynamics and its mechanism of action. In this research work, the HINT (Hydropathic INTeractions) LogP-based scoring function was first used to handle MD trajectories and investigate the molecular basis behind the intricate PPARγ mechanism of activation. The Peroxisome Proliferator-Activated Receptor γ (PPARγ) is an emblematic example of a highly flexible protein due to the extended ω-loop delimiting the active site, and it is responsible for the receptor's ability to bind chemically different compounds. In this work, we focused on the PPARγ complex with Rosiglitazone, a common anti-diabetic compound and analyzed the molecular basis of the flexible ω-loop stabilization effect produced by the Oleic Acid co-binding. The HINT-based analysis of the produced MD trajectories allowed us to account for all of the energetic contributions involved in interconverting between conformational states and describe the intramolecular interactions between the flexible ω-loop and the helix H3 triggered by the allosteric binding mechanism.
Collapse
Affiliation(s)
| | - Pietro Cozzini
- Molecular Modelling Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze, 17/A, 43121 Parma, Italy;
| |
Collapse
|
10
|
Liu Q, Ma L, Chen F, Zhang S, Huang Z, Zheng X, Chen Z, Ye J, Hou N, Yi W, Zhou Z. Raloxifene-driven benzothiophene derivatives: Discovery, structural refinement, and biological evaluation as potent PPARγ modulators based on drug repurposing. Eur J Med Chem 2024; 269:116325. [PMID: 38527378 DOI: 10.1016/j.ejmech.2024.116325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/27/2024]
Abstract
By virtue of the drug repurposing strategy, the anti-osteoporosis drug raloxifene was identified as a novel PPARγ ligand through structure-based virtual high throughput screening (SB-VHTS) of FDA-approved drugs and TR-FRET competitive binding assay. Subsequent structural refinement of raloxifene led to the synthesis of a benzothiophene derivative, YGL-12. This compound exhibited potent PPARγ modulation with partial agonism, uniquely promoting adiponectin expression and inhibiting PPARγ Ser273 phosphorylation by CDK5 without inducing the expression of adipongenesis associated genes, including PPARγ, aP2, CD36, FASN and C/EBPα. This specific activity profile resulted in effective hypoglycemic properties, avoiding major TZD-related adverse effects like weight gain and hepatomegaly, which were demonstrated in db/db mice. Molecular docking studies showed that YGL-12 established additional hydrogen bonds with Ile281 and enhanced hydrogen-bond interaction with Ser289 as well as PPARγ Ser273 phosphorylation-related residues Ser342 and Glu343. These findings suggested YGL-12 as a promising T2DM therapeutic candidate, thereby providing a molecular framework for the development of novel PPARγ modulators with an enhanced therapeutic index.
Collapse
Affiliation(s)
- Qingmei Liu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Lei Ma
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Fangyuan Chen
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Shuyun Zhang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zexin Huang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Xiufen Zheng
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zikai Chen
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Junwei Ye
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Ning Hou
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Wei Yi
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Zhi Zhou
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| |
Collapse
|
11
|
Ballav S, Lokhande KB, Yadav RS, Ghosh P, Swamy KV, Basu S. Exploring binding mode assessment of novel kaempferol, resveratrol, and quercetin derivatives with PPAR-α as potent drug candidates against cancer. Mol Divers 2023; 27:2867-2885. [PMID: 36544031 DOI: 10.1007/s11030-022-10587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Peroxisome proliferator-activated receptors (PPAR)-α, a ligand-activated transcription factor stands out to be a valuable protein target against cancer. Given that ligand binding is the crucial process for the activation of PPAR-α, fibrate class of synthetic compounds serves as potent agonist for the receptor. However, their serious side effects limit the long-term application in cancer. This emphasizes the dire need to identify new candidates that would exert desired activation by abrogating the adverse effects caused by synthetic agonists. Natural dietary products serve as an important source of drug discovery. Hence, the present study encompasses the investigation of the role of natural plant phenolic compounds: kaempferol, resveratrol, and quercetin and their 8708 derivatives by the means of computational pipeline comprising molecular docking and molecular dynamic (MD) simulation techniques. Docking calculations shortlisted potential candidates, namely 6-cinnamylchrysin (6-CC), resveratrol potassium-4-sulfate (RPS) and 6-[2-(3,4-Dihydroxyphenyl)-5-hydroxy-4-oxochromen-7-yl]oxyhexyl nitrate (DHOON), and derivatives of kaempferol, resveratrol, and quercetin, respectively. 6-CC, RPS, and DHOON manifested better affinities of - 32.83 kcal/mol (Ala333, Lys358, His440), - 27.22 kcal/mol (Tyr314, Met355), and - 30.18 kcal/mol (Ser280, Tyr314, Ala333), respectively, and were found to act as good stimulants for PPAR-α. Among these three compounds, 6-CC caused relatively least deviations and fluctuations analyzed through MD simulation which judiciously held responsible to attain most favorable interaction with PPAR-α. Followed by the binding free energy (ΔG) calculations using MM-GBSA confirmed the key role of 6-CC toward PPAR-α. The compound 6-CC also achieved high drug-likeness and pharmacokinetic properties. Thus, these findings stipulate new drug leads for PPAR-α receptor which abets a way to develop new anti-cancer drugs.
Collapse
Affiliation(s)
- Sangeeta Ballav
- Cancer and Translational Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, 411033, Maharashtra, India
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, 201314, India
| | - Rohit Singh Yadav
- Cancer and Translational Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, 411033, Maharashtra, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - K V Swamy
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, 411033, Maharashtra, India
- Bioinformatics Research Group, MIT School of Bioengineering Science & Research, MIT Art, Design and Technology University, Pune, Maharashtra, 412201, India
| | - Soumya Basu
- Cancer and Translational Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India.
| |
Collapse
|
12
|
He S, Liu J, Hu L, Zhan Y, Tong H, Zhu H, Guo H, Sun H, Liu M. Design, Synthesis, Biological Evaluation and Molecular Docking Studies of Quercetin-Linker-H 2 S Donor Conjugates for the Treatment of Diabetes and Wound Healing. Chem Biodivers 2023; 20:e202300513. [PMID: 37329234 DOI: 10.1002/cbdv.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/18/2023]
Abstract
Based on the use of quercetin for treating diabetes and H2 S for promoting wound healing, a series of three quercetin-linker-H2 S donor conjugates was designed, synthesized and characterized by 1 H-NMR, 13 C-NMR and MS. Meanwhile, in vitro evaluation of these compounds was also researched by IR-HepG2 treatment experiment, MTT assay, scratch test and tubule formation experiment. The three compounds could be used to treat insulin resistance induced by high glucose and promote the proliferation of human umbilical vein endothelial cells, wound healing, and the formation of tubules in vitro under a high-glucose environment. Our results illustrate that these compounds could be used to treat diabetes and promote wound healing at the same time. Furthermore, molecular docking study results of the compounds were consistent with the evaluated biological activity. In vivo research of compounds is underway.
Collapse
Affiliation(s)
- Shibo He
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 430068, Wuhan, China
| | - Jian Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 430068, Wuhan, China
| | - Lifei Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- Jing Brand Chizhengtang Pharmaceutical Co., Ltd., 435100, Huangshi, China
| | - Yifeng Zhan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 430068, Wuhan, China
| | - Hang Tong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 430068, Wuhan, China
| | - Hongda Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 430068, Wuhan, China
| | - Huiling Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 430068, Wuhan, China
| | - Hongmei Sun
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 430068, Wuhan, China
| | - Mingxing Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 430068, Wuhan, China
| |
Collapse
|
13
|
D’Aniello E, Amodeo P, Vitale RM. Marine Natural and Nature-Inspired Compounds Targeting Peroxisome Proliferator Activated Receptors (PPARs). Mar Drugs 2023; 21:md21020089. [PMID: 36827130 PMCID: PMC9966990 DOI: 10.3390/md21020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Peroxisome proliferator-activated receptors α, γ and β/δ (PPARα, PPARγ, and PPARβ/δ) are a family of ligand-activated transcriptional factors belonging to the superfamily of nuclear receptors regulating the expression of genes involved in lipid and carbohydrate metabolism, energy homeostasis, inflammation, and the immune response. For this reason, they represent attractive targets for the treatment of a variety of metabolic diseases and, more recently, for neurodegenerative disorders due to their emerging neuroprotective effects. The degree of activation, from partial to full, along with the selectivity toward the different isoforms, greatly affect the therapeutic efficacy and the safety profile of PPAR agonists. Thus, there is a high interest toward novel scaffolds with proper combinations of activity and selectivity. This review intends to provide an overview of the discovery, optimization, and structure-activity relationship studies on PPAR modulators from marine sources, along with the structural and computational studies that led to their identification and/or elucidation, and rationalization of their mechanisms of action.
Collapse
Affiliation(s)
- Enrico D’Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
- Correspondence: (P.A.); (R.M.V.)
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
- Correspondence: (P.A.); (R.M.V.)
| |
Collapse
|
14
|
Xu XT, Shi LY, Ban YJ, Luo BL, Zhu GF, Guo B, Tang L, Sang ZP, Wang JT. Design, synthesis and biological evaluation of cajanonic acid A analogues as potent PPAR γ antagonists. Bioorg Med Chem Lett 2023; 80:129081. [PMID: 36414176 DOI: 10.1016/j.bmcl.2022.129081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPAR γ) antagonists are a key instrument of insulin sensitizers since they have the ability to sensitize insulin and can avoid adverse reactions caused by receptor agonist. In this paper, two series of 28 novel Cajanonic acid A (CAA) derivatives were designed and synthesized. The biological activity showed that a novel CAA derivative 9f was identified as a potential PPAR γ antagonist by medicinal chemistry efforts. The results in vitro displayed that compound 9f could improve the PPAR γ antagonist activity (96.2 % / 50.2 % decrease in PPAR γ transactivation at 10 μM / 1 μM, respectively). It also could improve the glucose consumption activity of insulin-resistant HepG2/3T3-L1 cell line (33.27 % / 72.61 % increase in glucose consumption). And in 3 T3-L1 adipocytes, it showed anti-adipogenesis activity (7.04 % increase in oil red staining). Further, in vivo study suggested that compound 9f could improve the oral glucose tolerance in db/db mice. Taken together, derivative 9f served as a promising candidate for anti-diabetic drug discovery and deserve further study.
Collapse
Affiliation(s)
- Xiao-Ting Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical Univeristy, Guiyang 550004, China
| | - Li-Ying Shi
- Department of Ultrasound, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Yu-Juan Ban
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical Univeristy, Guiyang 550004, China
| | - Bi-Lan Luo
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical Univeristy, Guiyang 550004, China
| | - Gao-Feng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical Univeristy, Guiyang 550004, China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical Univeristy, Guiyang 550004, China
| | - Zhi-Pei Sang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical Univeristy, Guiyang 550004, China
| | - Jian-Ta Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical Univeristy, Guiyang 550004, China.
| |
Collapse
|
15
|
Yang B, Yuan K, Lu M, El-Kott AF, Negm S, Sun QP, Yang L. Anti-cancer, Anti-collagenase and Anti-elastase Potentials of Some Natural Derivatives: In vitro and in silico Studies. J Oleo Sci 2023; 72:557-570. [PMID: 37121681 DOI: 10.5650/jos.ess22337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The anti-cancer activities of the compounds were evaluated against KYSE-150, KYSE-30, and KYSE-270 cell lines and also on investigated esophageal line HET 1 A as a standard. Modified inhibitory impact on enzymes of collagenase and elastase were used Thring and Moon methods, respectively. Among both compounds, both of them recorded impact on cancer cells being neutral against the control, both had IC50 lower than 100 µM and acted as a potential anticancer drug. The chemical activities of Skullcapflavone I and Skullcapflavone II against elastase and collagenase were investigated utilizing the molecular modeling study. IC50 values of Skullcapflavone I and Skullcapflavone II on collagenase enzyme were obtained 106.74 and 92.04 µM and for elastase enzyme were 186.70 and 123.52 µM, respectively. Anticancer effects of these compounds on KYSE 150, KYSE 30, and KYSE 270 esophageal cancer cell lines studied in this work. For Skullcapflavone I, IC50 values for these cell lines were obtained 14.25, 19.03, 25.10 µM, respectively. Also, for Skullcapflavone II were recorded 20.42, 34.17, 22.40 µM, respectively. The chemical activities of Skullcapflavone I and Skullcapflavone II against some of the expressed surface receptor proteins (CD44, EGFR, and PPARγ) in the mentioned cell lines were assessed using the molecular docking calculations. The calculations showed the possible interactions and their characteristics at an atomic level.
Collapse
Affiliation(s)
- Binfeng Yang
- Department of Medical Oncology, Suzhou Ninth People's Hospital·Suzhou Ninth Hospital Affiliated to Soochow University
| | - Kaisheng Yuan
- Department of Gastroenterology, People's Hospital of Hongze District
| | - Ming Lu
- Department of General Surgery-Gastrointestinal Surgery JiLin Central Hospital
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University
- Department of Zoology, College of Science, Damanhour University
| | - Sally Negm
- Department of Life Sciences, Faculty of Science and Art Mahail, King Khalid University
- Unit of Food Bacteriology, Central Laboratory of Food Hygiene, Ministry of Health
| | - Qiu Ping Sun
- Department of Chinese Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention
| | - Lu Yang
- Department of Chinese Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
- Department of Comprehensive Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention
| |
Collapse
|
16
|
Takahashi J, Takahashi N, Tadaishi M, Shimizu M, Kobayashi-Hattori K. Valerenic Acid Promotes Adipocyte Differentiation, Adiponectin Production, and Glucose Uptake via Its PPARγ Ligand Activity. ACS OMEGA 2022; 7:48113-48120. [PMID: 36591200 PMCID: PMC9798764 DOI: 10.1021/acsomega.2c06120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Although valerenic acid (VA) is an important marker compound for quantitative assessment of Valeriana officinalis products, little is known about its potential effects on adipocytes. We investigated the effects of VA on adipocyte differentiation, adiponectin production, and glucose uptake using 3T3-L1 adipocytes. The results showed that VA promoted adipocyte differentiation and increased the gene expression of adipogenesis and glucose uptake-related proteins, including peroxisome proliferator-activated receptor gamma (PPARγ), cytosine-cytosine-adenosine-adenosine-thymidine enhancer binding protein alpha (C/EBPα), adiponectin, and glucose transporter 4 (GLUT4). Additionally, cell cultures treated with VA had elevated adiponectin secretion and glucose uptake. The PPARγ luciferase assay indicated VA as a partial agonist of PPARγ, while the analysis using its antagonist, GW9662, and a docking simulation between PPARγ and VA revealed the binding site of VA as likely adjacent to the Ω loop pocket of PPARγ. Taken together, these results demonstrate that VA acts as a PPARγ partial agonist to promote adipocyte differentiation, adiponectin production, and glucose uptake.
Collapse
Affiliation(s)
- Jun Takahashi
- Department
of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Nobuyuki Takahashi
- Department
of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Miki Tadaishi
- Department
of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Makoto Shimizu
- Department
of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kazuo Kobayashi-Hattori
- Department
of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
17
|
Southall S, Banerjee J, Brown J, Butkovic K, Cansfield AD, Cansfield JE, Congreve MS, Cseke G, Deflorian F, Hunjadi MP, Hutinec A, Inturi TK, Rupcic R, Saxty G, Watson SP. Novel Macrocyclic Antagonists of the CGRP Receptor Part 2: Stereochemical Inversion Induces an Unprecedented Binding Mode. ACS Med Chem Lett 2022; 13:1776-1782. [PMID: 36385934 PMCID: PMC9661699 DOI: 10.1021/acsmedchemlett.2c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
The diastereomeric macrocyclic calcitonin gene-related peptide (CGRP) antagonists HTL0029881 (3) and HTL0029882 (4), in which the stereochemistry of a spiro center is reversed, surprisingly demonstrate comparable potency. X-ray crystallographic characterization demonstrates that 3 binds to the CGRP receptor in a precedented manner but that 4 binds in an unprecedented, unexpected, and radically different manner. The observation of this phenomenon is noteworthy and may open novel avenues for CGRP receptor antagonist design.
Collapse
Affiliation(s)
- Stacey
M. Southall
- Sosei
Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Joydeep Banerjee
- Syngene
International, Biocon Park, Bommasandra, Bangalore, Karnataka 560099, India
| | - Jason Brown
- Sosei
Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | | | - Andrew D. Cansfield
- Sosei
Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Julie E. Cansfield
- Sosei
Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Miles S. Congreve
- Sosei
Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Gabriella Cseke
- Sosei
Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Francesca Deflorian
- Sosei
Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | | | - Antun Hutinec
- Selvita
d.o.o., Prilaz aruna
Filipovića 29, 10000 Zagreb, Croatia
| | - Trinadh Kumar Inturi
- Syngene
International, Biocon Park, Bommasandra, Bangalore, Karnataka 560099, India
| | - Renata Rupcic
- Selvita
d.o.o., Prilaz aruna
Filipovića 29, 10000 Zagreb, Croatia
| | - Gordon Saxty
- Selvita
d.o.o., Prilaz aruna
Filipovića 29, 10000 Zagreb, Croatia
| | - Stephen P. Watson
- Sosei
Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| |
Collapse
|
18
|
Zhang N, Guan C, Liu Z, Li C, Yang C, Xu L, Niu M, Zhao L, Zhou B, Che L, Wang Y, Xu Y. Calycosin attenuates renal ischemia/reperfusion injury by suppressing NF-κB mediated inflammation via PPARγ/EGR1 pathway. Front Pharmacol 2022; 13:970616. [PMID: 36278223 PMCID: PMC9585199 DOI: 10.3389/fphar.2022.970616] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/26/2022] [Indexed: 08/10/2023] Open
Abstract
Renal ischemia reperfusion injury (IRI) is a leading and common cause of acute kidney injury (AKI), and inflammation is a critical factor in ischemic AKI progression. Calycosin (CAL), a major active component of Radix astragali, has been reported to have anti-inflammatory effect in multiple organs. However, whether CAL can alleviate renal IRI and its mechanism remain uncertain. In the present study, a renal IRI model is established by bilateral renal pedicles occlusion for 35 min in male C57BL/6 mice, and the effect of CAL on renal IRI is measured by serum creatinine and pathohistological assay. Hypoxia/reoxygenation (H/R) stimulated human renal tubular epithelial cells HK-2 were applied to explore the regulatory mechanisms of CAL. Luciferase reporter assay and molecular docking were applied to identify the CAL's target protein and pathway. In the mice with renal IRI, CAL dose dependently alleviated the renal injury and decreased nuclear factor kappa B (NF-κB) mediated inflammatory response. Bioinformatics analysis and experiments showed that early growth response 1 (EGR1) increased in mice with renal IRI and promoted NF-κB mediated inflammatory processes, and CAL dose-dependably reduced EGR1. Through JASPAR database and luciferase reporter assay, peroxisome proliferator-activated receptor γ (PPARγ) was predicted to be a transcription factor of EGR1 and repressed the expression of EGR1 in renal tubular epithelial cells. CAL could increase PPARγ in a dose dependent manner in mice with renal IRI and molecular docking predicted CAL could bind stably to PPARγ. In HK-2 cells after H/R, CAL increased PPARγ, decreased EGR1, and inhibited NF-κB mediated inflammatory response. However, PPARγ knockdown by siRNA transfection abrogated the anti-inflammation therapeutic effect of CAL. CAL produced a protective effect on renal IRI by attenuating NF-κB mediated inflammatory response via PPARγ/EGR1 pathway.
Collapse
|
19
|
Feng L, Lu S, Zheng Z, Chen Y, Zhao Y, Song K, Xue H, Jin L, Li Y, Huang C, Li YM, Zhang J. Identification of an allosteric hotspot for additive activation of PPARγ in antidiabetic effects. Sci Bull (Beijing) 2021; 66:1559-1570. [PMID: 36654285 DOI: 10.1016/j.scib.2021.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/25/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Thiazolidinediones (TZDs), such as rosiglitazone (RSG), which activates peroxisome proliferator activated receptor-γ (PPARγ), are a potent class of oral antidiabetic agents with good durability. However, the clinical use of TZDs is challenging because of their side effects, including weight gain and hepatotoxicity. Here, we found that bavachinin (BVC), a lead natural product, additively activates PPARγ with low-dose RSG to preserve the maximum antidiabetic effects while reducing weight gain and hepatotoxicity in db/db mice caused by RSG monotherapy. Structural and biochemical assays demonstrated that an unexplored hotspot around Met329 and Ser332 in helix 5 is triggered by BVC cobinding to RSG-bound PPARγ, thereby allosterically stabilizing the active state of the activation-function 2 motif responsible for additive activation with RSG. Based on this hotspot, we discovered a series of new classes of allosteric agonists inducing the activity of TZDs in the same manner as BVC. Together, our data illustrate that the hotspot of PPARγ is druggable for the discovery of new allosteric synergists, and the combination therapy of allosteric synergists and TZD drugs may provide a potential alternative approach to the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Li Feng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shaoyong Lu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhen Zheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yingyi Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanyuan Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kun Song
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hongjuan Xue
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Ming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
20
|
Frkic RL, Richter K, Bruning JB. The therapeutic potential of inhibiting PPARγ phosphorylation to treat type 2 diabetes. J Biol Chem 2021; 297:101030. [PMID: 34339734 PMCID: PMC8387755 DOI: 10.1016/j.jbc.2021.101030] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022] Open
Abstract
A promising approach for treating type 2 diabetes mellitus (T2DM) is to target the Peroxisome Proliferator-Activated Receptor γ (PPARγ) transcription factor, which regulates the expression of proteins critical for T2DM. Mechanisms involved in PPARγ signaling are poorly understood, yet globally increasing T2DM prevalence demands improvements in drug design. Synthetic, nonactivating PPARγ ligands can abolish the phosphorylation of PPARγ at Ser273, a posttranslational modification correlated with obesity and insulin resistance. It is not understood how these ligands prevent phosphorylation, and the lack of experimental mechanistic information can be attributed to previous ambiguity in the field as well as to limitations in experimental approaches; in silico modeling currently provides the only insight into how ligands block Ser273 phosphorylation. The future availability of experimental evidence is critical for clarifying the mechanism by which ligands prevent phosphorylation and should be the priority of future T2DM-focused research. Following this, the properties of ligands that enable them to block phosphorylation can be improved upon to generate ligands tailored for blocking phosphorylation and therefore restoring insulin sensitivity. This would represent a significant step forward for treating T2DM. This review summarizes current knowledge of the roles of PPARγ in T2DM as well as the effects of synthetic ligands on the modulation of these roles. We hypothesize potential factors that contribute to the reduction in recent developments and summarize what has currently been done to shed light on this critical field of research.
Collapse
Affiliation(s)
- Rebecca L Frkic
- The Institute for Photonics and Advanced Sensing, and School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Katharina Richter
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide, South Australia, Australia
| | - John B Bruning
- The Institute for Photonics and Advanced Sensing, and School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
21
|
Shang J, Kojetin DJ. Structural mechanism underlying ligand binding and activation of PPARγ. Structure 2021; 29:940-950.e4. [PMID: 33713599 DOI: 10.1016/j.str.2021.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022]
Abstract
Ligands bind to an occluded orthosteric ligand-binding pocket within the nuclear receptor ligand-binding domain. Molecular simulations have revealed theoretical ligand entry/exit pathways to the orthosteric pocket; however, it remains unclear whether ligand binding proceeds through induced fit or conformational selection mechanisms. Here, using nuclear magnetic resonance spectroscopy, isothermal titration calorimetry, and surface plasmon resonance analysis, we provide evidence that structurally distinct agonists bind peroxisome proliferator-activated receptor γ (PPARγ) via a two-step induced fit mechanism involving an initial fast kinetic step followed by a slow conformational change. The agonist encounter complex binding pose is suggested in crystal structures where ligands bind to a surface pore suggested as a ligand entry site in molecular simulations. Our findings suggest an activation mechanism for PPARγ whereby agonist binding occurs through an initial encounter complex followed by a transition of the ligand into the final binding pose within the orthosteric pocket, inducing a transcriptionally active conformation.
Collapse
Affiliation(s)
- Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
22
|
Yang Z, Zhao Y, Hao D, Wang H, Li S, Jia L, Yuan X, Zhang L, Meng L, Zhang S. Computational identification of potential chemoprophylactic agents according to dynamic behavior of peroxisome proliferator-activated receptor gamma. RSC Adv 2020; 11:147-159. [PMID: 35423024 PMCID: PMC8690233 DOI: 10.1039/d0ra09059j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is an attractive target for chemoprevention of lung carcinoma, however its highly dynamic nature has plagued drug development for decades, with difficulties in receptor modeling for structure-based design. In this work, an integrated receptor-based virtual screening (VS) strategy was applied to identify PPARγ agonists as chemoprophylactic agents by using extensive docking and conformational sampling methods. Our results showed that the conformational plasticity of PPARγ, especially the H2 & S245 loop, H2' & Ω loop and AF-2 surface, is markedly affected by binding of full/partial agonists. To fully take the dynamic behavior of PPARγ into account, the VS approach effectively sorts out five commercial agents with reported antineoplastic properties. Among them, ZINC03775146 (gusperimus) and ZINC14087743 (miltefosine) might be novel PPARγ agonists with the potential for chemoprophylaxis, that simultaneously take part in a flexible switch of the AF-2 surface and state change of the Ω loop. Furthermore, the dynamic structural coupling between the H2 & S245 and H2' & Ω loops offers enticing hope for PPARγ-targeted therapeutics, by blocking kinase accessibility to PPARγ. These results might aid the development of chemopreventive drugs, and the integrated VS strategy could be conducive to drug design for highly flexible biomacromolecules.
Collapse
Affiliation(s)
- Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University Xi'an 710049 China +86-29-82660915 +86-29-82660915
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi'an Jiaotong University Xi'an 710049 China
- School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University Xi'an 710049 China +86-29-82660915 +86-29-82660915
| | - Dongxiao Hao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University Xi'an 710049 China +86-29-82660915 +86-29-82660915
| | - He Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University Xi'an 710049 China +86-29-82660915 +86-29-82660915
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University Shanghai 200041 China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University Xi'an 710032 China
| | - Xiaohui Yuan
- Institute of Biomedicine, Jinan University Guangzhou 510632 China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University Xi'an 710049 China +86-29-82660915 +86-29-82660915
| | - Lingjie Meng
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi'an Jiaotong University Xi'an 710049 China
- Instrumental Analysis Center, Xi'an Jiao Tong University Xi'an 710049 China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University Xi'an 710049 China +86-29-82660915 +86-29-82660915
| |
Collapse
|
23
|
Differential Effects of Cancer-Associated Mutations Enriched in Helix H3 of PPARγ. Cancers (Basel) 2020; 12:cancers12123580. [PMID: 33266062 PMCID: PMC7761077 DOI: 10.3390/cancers12123580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) has recently been revealed to regulate tumor microenvironments. In particular, genetic alterations of PPARγ found in various cancers have been reported to play important roles in tumorigenesis by affecting PPARγ transactivation. In this study, we found that helix H3 of the PPARγ ligand-binding domain (LBD) has a number of sites that are mutated in cancers. To uncover underlying molecular mechanisms between helix H3 mutations and tumorigenesis, we performed structure‒function studies on the PPARγ LBDs containing helix H3 mutations found in cancers. Interestingly, PPARγ Q286E found in bladder cancer induces a constitutively active conformation of PPARγ LBD and thus abnormal activation of PPARγ/RXRα pathway, which suggests tumorigenic roles of PPARγ in bladder cancer. In contrast, other helix H3 mutations found in various cancers impair ligand binding essential for transcriptional activity of PPARγ. These data indicate that cancer-associated mutations clustered in helix H3 of PPARγ LBD exhibit differential effects in PPARγ-mediated tumorigenesis and provide a basis for the development of new biomarkers targeting tumor microenvironments.
Collapse
|
24
|
Montanari R, Capelli D, Yamamoto K, Awaishima H, Nishikata K, Barendregt A, Heck AJR, Loiodice F, Altieri F, Paiardini A, Grottesi A, Pirone L, Pedone E, Peiretti F, Brunel JM, Itoh T, Pochetti G. Insights into PPARγ Phosphorylation and Its Inhibition Mechanism. J Med Chem 2020; 63:4811-4823. [DOI: 10.1021/acs.jmedchem.0c00048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria km. 29.300, 00015 Monterotondo Stazione, Rome, Italy
| | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria km. 29.300, 00015 Monterotondo Stazione, Rome, Italy
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen,
Machida, Tokyo 194-8543, Japan
| | - Hirono Awaishima
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen,
Machida, Tokyo 194-8543, Japan
| | - Kimina Nishikata
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen,
Machida, Tokyo 194-8543, Japan
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science4Life, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science4Life, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Fulvio Loiodice
- Department of Pharmacy & Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Fabio Altieri
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Franck Peiretti
- Faculté de Médecine, Aix Marseille Université, INSERM, INRAE, C2VN, 13385 Marseille, France
| | | | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen,
Machida, Tokyo 194-8543, Japan
| | - Giorgio Pochetti
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria km. 29.300, 00015 Monterotondo Stazione, Rome, Italy
| |
Collapse
|
25
|
Wu L, Guo C, Wu J. Therapeutic potential of PPARγ natural agonists in liver diseases. J Cell Mol Med 2020; 24:2736-2748. [PMID: 32031298 PMCID: PMC7077554 DOI: 10.1111/jcmm.15028] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/17/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator‐activated receptor gamma (PPARγ) is a vital subtype of the PPAR family. The biological functions are complex and diverse. PPARγ plays a significant role in protecting the liver from inflammation, oxidation, fibrosis, fatty liver and tumours. Natural products are a promising pool for drug discovery, and enormous research effort has been invested in exploring the PPARγ‐activating potential of natural products. In this manuscript, we will review the research progress of PPARγ agonists from natural products in recent years and probe into the application potential and prospects of PPARγ natural agonists in the therapy of various liver diseases, including inflammation, hepatic fibrosis, non‐alcoholic fatty liver and liver cancer.
Collapse
Affiliation(s)
- Liwei Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Fusani L, Palmer DS, Somers DO, Wall ID. Exploring Ligand Stability in Protein Crystal Structures Using Binding Pose Metadynamics. J Chem Inf Model 2020; 60:1528-1539. [PMID: 31910338 PMCID: PMC7145342 DOI: 10.1021/acs.jcim.9b00843] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Identification of
correct protein–ligand binding poses is
important in structure-based drug design and crucial for the evaluation
of protein–ligand binding affinity. Protein–ligand coordinates are commonly obtained from
crystallography experiments that provide a static model of an ensemble
of conformations. Binding pose metadynamics (BPMD) is an enhanced
sampling method that allows for an efficient assessment of ligand
stability in solution. Ligand poses that are unstable under the bias
of the metadynamics simulation are expected to be infrequently occupied
in the energy landscape, thus making minimal contributions to the
binding affinity. Here, the robustness of the method is studied using
crystal structures with ligands known to be incorrectly modeled, as
well as 63 structurally diverse crystal structures with ligand fit
to electron density from the Twilight database. Results show that
BPMD can successfully differentiate compounds whose binding pose is
not supported by the electron density from those with well-defined
electron density.
Collapse
Affiliation(s)
- Lucia Fusani
- Molecular Design UK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.,Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G11XL, U.K
| | - David S Palmer
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G11XL, U.K
| | - Don O Somers
- Protein, Cellular and Structural Sciences, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D Wall
- Molecular Design UK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
27
|
Jiang H, Zhou XE, Shi J, Zhou Z, Zhao G, Zhang X, Sun Y, Suino-Powell K, Ma L, Gao H, Yu X, Li J, Li J, Melcher K, Xu HE, Yi W. Identification and structural insight of an effective PPARγ modulator with improved therapeutic index for anti-diabetic drug discovery. Chem Sci 2020; 11:2260-2268. [PMID: 32190280 PMCID: PMC7059199 DOI: 10.1039/c9sc05487a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/20/2020] [Indexed: 01/09/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a key regulator of glucose homeostasis and lipid metabolism, and an important target for the development of modern anti-diabetic drugs. However, current PPARγ-targeting anti-diabetic drugs such as classical thiazolidinediones (TZDs) are associated with undesirable side effects. To address this concern, we here describe the structure-based design, synthesis, identification and detailed in vitro and in vivo characterization of a novel, decanoic acid (DA)-based and selective PPARγ modulator (SPPARγM), VSP-77, especially (S)-VSP-77, as the potential "hit" for the development of improved and safer anti-diabetic therapeutics. We have also determined the co-crystal structure of the PPARγ ligand-binding domain (LBD) in complex with two molecules of (S)-VSP-77, which reveal a previously undisclosed allosteric binding mode. Overall, these findings not only demonstrate the therapeutic advantage of (S)-VSP-77 over current TZD drugs and representative partial agonist INT131, but also provide a rational basis for the development of future SPPARγMs as safe and highly efficacious anti-diabetic drugs.
Collapse
Affiliation(s)
- Haowen Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology , State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China . .,National Center for Drug Screening , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China . ;
| | - X Edward Zhou
- Structural Biology Program , Center for Cancer and Cell Biology , Van Andel Research Institute , Grand Rapids , Michigan 49503 , USA
| | - Jingjing Shi
- VARI/SIMM Center , Center for Structure and Function of Drug Targets , CAS-Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China .
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology , State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China .
| | - Guanguan Zhao
- VARI/SIMM Center , Center for Structure and Function of Drug Targets , CAS-Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China .
| | - Xinwen Zhang
- National Center for Drug Screening , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China . ;
| | - Yili Sun
- National Center for Drug Screening , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China . ;
| | - Kelly Suino-Powell
- Structural Biology Program , Center for Cancer and Cell Biology , Van Andel Research Institute , Grand Rapids , Michigan 49503 , USA
| | - Lei Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology , State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China .
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology , State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China .
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology , State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China .
| | - Jia Li
- National Center for Drug Screening , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China . ;
| | - Jingya Li
- National Center for Drug Screening , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China . ;
| | - Karsten Melcher
- Structural Biology Program , Center for Cancer and Cell Biology , Van Andel Research Institute , Grand Rapids , Michigan 49503 , USA
| | - H Eric Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology , State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China . .,VARI/SIMM Center , Center for Structure and Function of Drug Targets , CAS-Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China . .,Structural Biology Program , Center for Cancer and Cell Biology , Van Andel Research Institute , Grand Rapids , Michigan 49503 , USA
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology , State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China . .,VARI/SIMM Center , Center for Structure and Function of Drug Targets , CAS-Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China .
| |
Collapse
|
28
|
Abstract
Ligand-receptor interactions, which are ubiquitous in physiology, are described by theoretical models of receptor pharmacology. Structural evidence for graded efficacy receptor conformations predicted by receptor theory has been limited but is critical to fully validate theoretical models. We applied quantitative structure-function approaches to characterize the effects of structurally similar and structurally diverse agonists on the conformational ensemble of nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ). For all ligands, agonist functional efficacy is correlated to a shift in the conformational ensemble equilibrium from a ground state toward an active state, which is detected by NMR spectroscopy but not observed in crystal structures. For the structurally similar ligands, ligand potency and affinity are also correlated to efficacy and conformation, indicating ligand residence times among related analogs may influence receptor conformation and function. Our results derived from quantitative graded activity-conformation correlations provide experimental evidence and a platform with which to extend and test theoretical models of receptor pharmacology to more accurately describe and predict ligand-dependent receptor activity.
Collapse
|
29
|
Structural Basis for the Regulation of PPARγ Activity by Imatinib. Molecules 2019; 24:molecules24193562. [PMID: 31581474 PMCID: PMC6803859 DOI: 10.3390/molecules24193562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Imatinib is an effective anticancer drug for the treatment of leukemia. Interestingly, when an FDA-approved drug library was tested for agents that block peroxisome proliferator-activated receptor γ (PPARγ) phosphorylation at Ser245 to evaluate possibilities of antidiabetic drug repositioning, imatinib was determined as a PPARγ antagonist ligand. However, it is not well understood how imatinib binds to PPARγ or would improve insulin sensitivity without classical agonism. Here, we report the crystal structure of the PPARγ R288A mutant in complex with imatinib. Imatinib bound to Arm2 and Arm3 regions in the ligand-binding domain (LBD) of PPARγ, of which the Arm3 region is closely related to the inhibition of PPARγ phosphorylation at Ser245. The binding of imatinib in LBD induced a stable conformation of helix H2′ and the Ω loop compared with the ligand-free state. In contrast, imatinib does not interact with Tyr473 on PPARγ helix H12, which is important for the classical agonism associated with side effects. Our study provides new structural insights into the PPARγ regulation by imatinib and may contribute to the development of new antidiabetic drugs targeting PPARγ while minimizing known side effects.
Collapse
|
30
|
Laghezza A, Piemontese L, Tortorella P, Loiodice F. An update about the crucial role of stereochemistry on the effects of Peroxisome Proliferator-Activated Receptor ligands. Eur J Med Chem 2019; 176:326-342. [PMID: 31112893 DOI: 10.1016/j.ejmech.2019.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-activated transcription factors that govern lipid and glucose homeostasis playing a central role in cardiovascular disease, obesity, and diabetes. These receptors show a high degree of stereoselectivity towards several classes of drugs. This review covers the most relevant findings that have been made in the last decade and takes into consideration only those compounds in which stereochemistry led to unexpected results or peculiar interactions with the receptors. These cases are reviewed and discussed with the aim to show how enantiomeric recognition originates at the molecular level. The structural characterization by crystallographic methods and docking experiments of complexes formed by PPARs with their ligands turns out to be an essential tool to explain receptor stereoselectivity.
Collapse
Affiliation(s)
- Antonio Laghezza
- Dipartimento Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| | - Luca Piemontese
- Dipartimento Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| | - Paolo Tortorella
- Dipartimento Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| | - Fulvio Loiodice
- Dipartimento Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
31
|
Jang JY, Kim H, Kim HJ, Suh SW, Park SB, Han BW. Structural basis for the inhibitory effects of a novel reversible covalent ligand on PPARγ phosphorylation. Sci Rep 2019; 9:11168. [PMID: 31371757 PMCID: PMC6671948 DOI: 10.1038/s41598-019-47672-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a major therapeutic target for the treatment of type 2 diabetes. However, the use of PPARγ-targeted drugs, such as rosiglitazone and pioglitazone, is limited owing to serious side effects caused by classical agonism. Using a rational drug discovery approach, we recently developed SB1495, a novel reversible covalent inhibitor of the cyclin-dependent kinase 5 (Cdk5)-mediated phosphorylation of PPARγ at Ser245, a key factor in the insulin-sensitizing effect of PPARγ-targeted drugs. In this study, we report the crystal structures of PPARγ in complex with SB1495 and its enantiomeric analogue SB1494, which rarely exhibits inhibitory activity, to visualize the mechanistic basis for their distinct activities. SB1495 occupies the Arm3 region near the Ω loop of the PPARγ ligand-binding domain, whereas its enantiomeric analogue SB1494 binds to the Arm2 region. In addition, the piperazine moiety of SB1495 directly pushes the helix H2′, resulting in the stabilization of the Ω loop just behind the helix H2′. Our results may contribute to the development of a new generation of antidiabetic drugs that selectively block PPARγ phosphorylation without classical agonism.
Collapse
Affiliation(s)
- Jun Young Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunsoo Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Se Won Suh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Bum Park
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
32
|
Yang Z, Zhao Y, Hao D, Ren S, Yuan X, Meng L, Zhang S. Bindings of PPARγ ligand-binding domain with 5-cholesten-3β, 25-diol, 3-sulfate: accurate prediction by molecular simulation. J Biomol Struct Dyn 2019; 38:1918-1926. [DOI: 10.1080/07391102.2019.1620129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an, China
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an, China
| | - Dongxiao Hao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an, China
| | - Shunlin Ren
- Department of Medicine, Veterans Affairs McGuire Medical Center/Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Xiaohui Yuan
- Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Lingjie Meng
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
33
|
Meijer FA, Leijten-van de Gevel IA, de Vries RMJM, Brunsveld L. Allosteric small molecule modulators of nuclear receptors. Mol Cell Endocrinol 2019; 485:20-34. [PMID: 30703487 DOI: 10.1016/j.mce.2019.01.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
Abstract
Nuclear Receptors (NRs) are multi-domain proteins, whose natural regulation occurs via ligands for a classical, orthosteric, binding pocket and via intra- and inter-domain allosteric mechanisms. Allosteric modulation of NRs via synthetic small molecules has recently emerged as an interesting entry to address the need for small molecules targeting NRs in pathology, via novel modes of action and with beneficial profiles. In this review the general concept of allosteric modulation in drug discovery is first discussed, serving as a background and inspiration for NRs. Subsequently, the review focuses on examples of small molecules that allosterically modulate NRs, with a strong focus on structural information and the ligand binding domain. Recently discovered nanomolar potent allosteric site NR modulators are catapulting allosteric targeting of NRs to the center of attention. The obtained insights serve as a basis for recommendations for the next steps to take in allosteric small molecular targeting of NRs.
Collapse
Affiliation(s)
- Femke A Meijer
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Iris A Leijten-van de Gevel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Rens M J M de Vries
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands.
| |
Collapse
|
34
|
Aranaz P, Navarro-Herrera D, Zabala M, Miguéliz I, Romo-Hualde A, López-Yoldi M, Martínez JA, Vizmanos JL, Milagro FI, González-Navarro CJ. Phenolic Compounds Inhibit 3T3-L1 Adipogenesis Depending on the Stage of Differentiation and Their Binding Affinity to PPARγ. Molecules 2019; 24:molecules24061045. [PMID: 30884812 PMCID: PMC6470710 DOI: 10.3390/molecules24061045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Phenolic compounds might modulate adiposity. Here, we report our observation that polyphenols and phenolic acids inhibit adipogenesis in 3T3-L1 with different intensity depending on the family and the stage of differentiation. While quercetin and resveratrol inhibited lipid accumulation along the whole process of differentiation, apigenin and myricetin were active during the early and latest stages, but not intermediate, contrary to hesperidin. The activity of phenolic acids was limited to the early stages of the differentiation process, except p-coumaric and ellagic acids. This anti-adipogenic effect was accompanied by down-regulation of Scd1 and Lpl. Molecular docking analysis revealed that the inhibitory activity of these phenolic compounds over the early stages of adipogenesis exhibits a significant correlation (r = 0.7034; p = 0.005) with their binding affinity to the ligand-binding domain of PPARγ. Results show that polyphenols and phenolic acids would interact with specific residues of the receptor, which could determine their potential anti-adipogenic activity during the early stages of the differentiation. Residues Phe264, His266, Ile281, Cys285 and Met348 are the most frequently involved in these interactions, which might suggest a crucial role for these amino acids modulating the activity of the receptor. These data contribute to elucidate the possible mechanisms of phenolic compounds in the control of adipogenesis.
Collapse
Affiliation(s)
- Paula Aranaz
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - David Navarro-Herrera
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Department of Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - María Zabala
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Itziar Miguéliz
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Ana Romo-Hualde
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Miguel López-Yoldi
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - J Alfredo Martínez
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn); Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Fermín I Milagro
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn); Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | | |
Collapse
|
35
|
Grytting VS, Olderbø BP, Holme JA, Samuelsen JT, Solhaug A, Becher R, Bølling AK. Di-n-butyl phthalate modifies PMA-induced macrophage differentiation of THP-1 monocytes via PPARγ. Toxicol In Vitro 2019; 54:168-177. [DOI: 10.1016/j.tiv.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
|
36
|
Identification of novel PPARα/γ dual agonists by pharmacophore screening, docking analysis, ADMET prediction and molecular dynamics simulations. Comput Biol Chem 2019; 78:178-189. [DOI: 10.1016/j.compbiolchem.2018.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 01/05/2023]
|
37
|
Shang J, Brust R, Mosure SA, Bass J, Munoz-Tello P, Lin H, Hughes TS, Tang M, Ge Q, Kamenekca TM, Kojetin DJ. Cooperative cobinding of synthetic and natural ligands to the nuclear receptor PPARγ. eLife 2018; 7:43320. [PMID: 30575522 PMCID: PMC6317912 DOI: 10.7554/elife.43320] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) have revealed overlapping binding modes for synthetic and natural/endogenous ligands, indicating competition for the orthosteric pocket. Here we show that cobinding of a synthetic ligand to the orthosteric pocket can push natural and endogenous PPARγ ligands (fatty acids) out of the orthosteric pocket towards an alternate ligand-binding site near the functionally important omega (Ω)-loop. X-ray crystallography, NMR spectroscopy, all-atom molecular dynamics simulations, and mutagenesis coupled to quantitative biochemical functional and cellular assays reveal that synthetic ligand and fatty acid cobinding can form a 'ligand link' to the Ω-loop and synergistically affect the structure and function of PPARγ. These findings contribute to a growing body of evidence indicating ligand binding to nuclear receptors can be more complex than the classical one-for-one orthosteric exchange of a natural or endogenous ligand with a synthetic ligand.
Collapse
Affiliation(s)
- Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Richard Brust
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Sarah A Mosure
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States.,Summer Undergraduate Research Fellows (SURF) program, The Scripps Research Institute, Jupiter, United States.,Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, United States
| | - Jared Bass
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Paola Munoz-Tello
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Hua Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Travis S Hughes
- Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, United States.,Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, United States
| | - Miru Tang
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, United States
| | - Qingfeng Ge
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, United States
| | - Theodore M Kamenekca
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
38
|
Structure-Based Stepwise Screening of PPARγ Antagonists as Potential Competitors with NCOA1 Coactivator Peptide for PPARγ CIS Site. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9782-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Laghezza A, Piemontese L, Cerchia C, Montanari R, Capelli D, Giudici M, Crestani M, Tortorella P, Peiretti F, Pochetti G, Lavecchia A, Loiodice F. Identification of the First PPARα/γ Dual Agonist Able To Bind to Canonical and Alternative Sites of PPARγ and To Inhibit Its Cdk5-Mediated Phosphorylation. J Med Chem 2018; 61:8282-8298. [DOI: 10.1021/acs.jmedchem.8b00835] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Antonio Laghezza
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Luca Piemontese
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Carmen Cerchia
- Dipartimento di Farmacia, “Drug Discovery” Laboratory, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Marco Giudici
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Paolo Tortorella
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Franck Peiretti
- Aix Marseille Université, INSERM 1263, INRA 1260, C2VN, 13005 Marseille, France
| | - Giorgio Pochetti
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Antonio Lavecchia
- Dipartimento di Farmacia, “Drug Discovery” Laboratory, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Fulvio Loiodice
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
40
|
Selective PPARγ modulators for Type 2 diabetes treatment: how far have we come and what does the future hold? Future Med Chem 2018; 10:703-705. [PMID: 29671628 DOI: 10.4155/fmc-2018-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
41
|
Structural Basis for the Enhanced Anti-Diabetic Efficacy of Lobeglitazone on PPARγ. Sci Rep 2018; 8:31. [PMID: 29311579 PMCID: PMC5758645 DOI: 10.1038/s41598-017-18274-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/04/2017] [Indexed: 01/11/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily. It functions as a ligand-activated transcription factor and plays important roles in the regulation of adipocyte differentiation, insulin resistance, and inflammation. Here, we report the crystal structures of PPARγ in complex with lobeglitazone, a novel PPARγ agonist, and with rosiglitazone for comparison. The thiazolidinedione (TZD) moiety of lobeglitazone occupies the canonical ligand-binding pocket near the activation function-2 (AF-2) helix (i.e., helix H12) in ligand-binding domain as the TZD moiety of rosiglitazone does. However, the elongated p-methoxyphenol moiety of lobeglitazone interacts with the hydrophobic pocket near the alternate binding site of PPARγ. The extended interaction of lobeglitazone with the hydrophobic pocket enhances its binding affinity and could affect the cyclin-dependent kinase 5 (Cdk5)-mediated phosphorylation of PPARγ at Ser245 (in PPARγ1 numbering; Ser273 in PPARγ2 numbering). Lobeglitazone inhibited the phosphorylation of PPARγ at Ser245 in a dose-dependent manner and exhibited a better inhibitory effect on Ser245 phosphorylation than rosiglitazone did. Our study provides new structural insights into the PPARγ regulation by TZD drugs and could be useful for the discovery of new PPARγ ligands as an anti-diabetic drug, minimizing known side effects.
Collapse
|
42
|
Zhang F, Lu S, He J, Jin H, Wang F, Wu L, Shao J, Chen A, Zheng S. Ligand Activation of PPARγ by Ligustrazine Suppresses Pericyte Functions of Hepatic Stellate Cells via SMRT-Mediated Transrepression of HIF-1α. Am J Cancer Res 2018; 8:610-626. [PMID: 29344293 PMCID: PMC5771080 DOI: 10.7150/thno.22237] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/22/2017] [Indexed: 12/31/2022] Open
Abstract
Rationale: Hepatic stellate cells (HSCs) are liver-specific pericytes regulating vascular remodeling during hepatic fibrosis. Here, we investigated how ligustrazine affects HSC pericyte functions. Methods: Rat HSC-T6 and human HSC-LX2 cells were cultured, and multiple molecular experiments including real-time PCR, Western blot, flow cytometry, immunofluorescence, electrophoretic mobility shift assay and co-immunoprecipitation were used to elucidate the underlying mechanisms. Molecular simulation and site-directed mutagenesis were performed to uncover the target molecule of ligustrazine. Rats were intoxicated with CCl4 for evaluating ligustrazine's effects in vivo. Results: Ligustrazine inhibited angiogenic cytokine production, migration, adhesion and contraction in HSCs, and activated PPARγ. Selective PPARγ inhibitor GW9662 potently abrogated ligustrazine suppression of HSC pericyte functions. Additionally, HIF-1α inhibitor PX-478 repressed HSC pericyte functions, and ligustrazine inhibited the transcription of HIF-1α, which was diminished by GW9662. Moreover, ligustrazine downregulation of HIF-1α was rescued by knockdown of SMRT, and ligustrazine increased PPARγ physical interaction with SMRT, which was abolished by GW9662. These findings collectively indicated that activation of PPARγ by ligustrazine led to transrepression of HIF-1α via a SMRT-dependent mechanism. Furthermore, molecular docking evidence revealed that ligustrazine bound to PPARγ in a unique double-molecule manner via hydrogen bonding with the residues Ser289 and Ser342. Site-directed mutation of Ser289 and/or Ser342 resulted in the loss of ligustrazine transrepression of HIF-1α in HSCs, indicating that interactions with both the residues were indispensable for ligustrazine effects. Finally, ligustrazine improved hepatic injury, angiogenesis and vascular remodeling in CCl4-induced liver fibrosis in rats. Conclusions: We discovered a novel ligand activation pattern for PPARγ transrepression of the target gene with therapeutic implications in HSC pericyte biology and liver fibrosis.
Collapse
|
43
|
Liu X, Jing Z, Jia WQ, Wang SQ, Ma Y, Xu WR, Liu JW, Cheng XC. Identification of novel PPARα/γ dual agonists by virtual screening, ADMET prediction and molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:2988-3002. [DOI: 10.1080/07391102.2017.1373706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xin Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Jing
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Wen-Qing Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shu-Qing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Wei-Ren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Jian-Wen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xian-Chao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|