1
|
Agellon LB. Importance of fatty acid binding proteins in cellular function and organismal metabolism. J Cell Mol Med 2024; 28:e17703. [PMID: 36876733 PMCID: PMC10902576 DOI: 10.1111/jcmm.17703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Fatty acid binding proteins (Fabps) are small soluble proteins that are abundant in the cytosol. These proteins are known to bind a myriad of small hydrophobic molecules and have been postulated to serve a variety of roles, yet their precise functions have remained an enigma over half a century of study. Here, we consider recent findings, along with the cumulative findings contributed by many laboratories working on Fabps over the last half century, to synthesize a new outlook for what functions Fabps serve in cells and organisms. Collectively, the findings illustrate that Fabps function as versatile multi-purpose devices serving as sensors, conveyors and modulators to enable cells to detect and handle a specific class of metabolites, and to adjust their metabolic capacity and efficiency.
Collapse
Affiliation(s)
- Luis B. Agellon
- School of Human NutritionMcGill UniversitySte. Anne de BellevueQuebecCanada
| |
Collapse
|
2
|
Barracchia CG, Tira R, Parolini F, Munari F, Bubacco L, Spyroulias GA, D’Onofrio M, Assfalg M. Unsaturated Fatty Acid-Induced Conformational Transitions and Aggregation of the Repeat Domain of Tau. Molecules 2020; 25:molecules25112716. [PMID: 32545360 PMCID: PMC7321374 DOI: 10.3390/molecules25112716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Background: The intrinsically disordered, amyloidogenic protein Tau associates with diverse classes of molecules, including proteins, nucleic acids, and lipids. Mounting evidence suggests that fatty acid molecules could play a role in the dysfunction of this protein, however, their interaction with Tau remains poorly characterized. Methods: In a bid to elucidate the association of Tau with unsaturated fatty acids at the sub-molecular level, we carried out a variety of solution NMR experiments in combination with circular dichroism and fluorescence measurements. Our study shows that Tau4RD, the highly basic four-repeat domain of Tau, associates strongly with arachidonic and oleic acid assemblies in a high lipid/protein ratio, perturbing their supramolecular states and itself undergoing time-dependent structural adaptation. The structural signatures of Tau4RD/fatty acid aggregates appear similar for arachidonic acid and oleic acid, however, they are distinct from those of another prototypical intrinsically disordered protein, α-synuclein, when bound to these lipids, revealing protein-specific conformational adaptations. Both fatty acid molecules are found to invariably promote the self-aggregation of Tau4RD and of α-synuclein. Conclusions: This study describes the reciprocal influence that Tau4RD and fatty acids exert on their conformational states, contributing to our understanding of fundamental aspects of Tau/lipid co-assembly.
Collapse
Affiliation(s)
- Carlo Giorgio Barracchia
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.G.B.); (R.T.); (F.P.); (F.M.); (M.D.)
| | - Roberto Tira
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.G.B.); (R.T.); (F.P.); (F.M.); (M.D.)
| | - Francesca Parolini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.G.B.); (R.T.); (F.P.); (F.M.); (M.D.)
| | - Francesca Munari
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.G.B.); (R.T.); (F.P.); (F.M.); (M.D.)
| | - Luigi Bubacco
- Department of Biology, University of Padova, 35131 Padova, Italy;
| | | | - Mariapina D’Onofrio
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.G.B.); (R.T.); (F.P.); (F.M.); (M.D.)
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.G.B.); (R.T.); (F.P.); (F.M.); (M.D.)
- Correspondence:
| |
Collapse
|
3
|
Lai MP, Katz FS, Bernard C, Storch J, Stark RE. Two fatty acid-binding proteins expressed in the intestine interact differently with endocannabinoids. Protein Sci 2020; 29:1606-1617. [PMID: 32298508 DOI: 10.1002/pro.3875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 11/07/2022]
Abstract
Two different members of the fatty acid-binding protein (FABP) family are found in enterocyte cells of the gastrointestinal system, namely liver-type and intestinal fatty acid-binding proteins (LFABP and IFABP, also called FABP1 and FABP2, respectively). Striking phenotypic differences have been observed in knockout mice for either protein, for example, high fat-fed IFABP-null mice remained lean, whereas LFABP-null mice were obese, correlating with differences in food intake. This finding prompted us to investigate the role each protein plays in directing the specificity of binding to ligands involved in appetite regulation, such as fatty acid ethanolamides and related endocannabinoids. We determined the binding affinities for nine structurally related ligands using a fluorescence competition assay, revealing tighter binding to IFABP than LFABP for all ligands tested. We found that the head group of the ligand had more impact on binding affinity than the alkyl chain, with the strongest binding observed for the carboxyl group, followed by the amide, and then the glycerol ester. These trends were confirmed using two-dimensional 1 H-15 N nuclear magnetic resonance (NMR) to monitor chemical shift perturbation of the protein backbone resonances upon titration with ligand. Interestingly, the NMR data revealed that different residues of IFABP were involved in the coordination of endocannabinoids than those implicated for fatty acids, whereas the same residues of LFABP were involved for both classes of ligand. In addition, we identified residues that are uniquely affected by binding of all types of ligand to IFABP, suggesting a rationale for its tighter binding affinity compared with LFABP.
Collapse
Affiliation(s)
- May Poh Lai
- Department of Chemistry and Biochemistry, CUNY City College of New York, New York, New York, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), New York, New York, USA.,CUNY Institute for Macromolecular Assemblies, New York, New York, USA
| | - Francine S Katz
- Department of Chemistry and Biochemistry, CUNY City College of New York, New York, New York, USA.,CUNY Institute for Macromolecular Assemblies, New York, New York, USA
| | - Cédric Bernard
- Department of Chemistry and Biochemistry, CUNY City College of New York, New York, New York, USA.,CUNY Institute for Macromolecular Assemblies, New York, New York, USA
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ruth E Stark
- Department of Chemistry and Biochemistry, CUNY City College of New York, New York, New York, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), New York, New York, USA.,CUNY Institute for Macromolecular Assemblies, New York, New York, USA
| |
Collapse
|
4
|
Patil R, Mohanty B, Liu B, Chandrashekaran IR, Headey SJ, Williams ML, Clements CS, Ilyichova O, Doak BC, Genissel P, Weaver RJ, Vuillard L, Halls ML, Porter CJH, Scanlon MJ. A ligand-induced structural change in fatty acid-binding protein 1 is associated with potentiation of peroxisome proliferator-activated receptor α agonists. J Biol Chem 2018; 294:3720-3734. [PMID: 30598509 DOI: 10.1074/jbc.ra118.006848] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/17/2018] [Indexed: 01/15/2023] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a transcriptional regulator of lipid metabolism. GW7647 is a potent PPARα agonist that must reach the nucleus to activate this receptor. In cells expressing human fatty acid-binding protein 1 (FABP1), GW7647 treatment increases FABP1's nuclear localization and potentiates GW7647-mediated PPARα activation; GW7647 is less effective in cells that do not express FABP1. To elucidate the underlying mechanism, here we substituted residues in FABP1 known to dictate lipid signaling by other intracellular lipid-binding proteins. Substitutions of Lys-20 and Lys-31 to Ala in the FABP1 helical cap affected neither its nuclear localization nor PPARα activation. In contrast, Ala substitution of Lys-57, Glu-77, and Lys-96, located in the loops adjacent to the ligand-binding portal region, abolished both FABP1 nuclear localization and GW7647-induced PPARα activation but had little effect on GW7647-FABP1 binding affinity. Using solution NMR spectroscopy, we determined the WT FABP1 structure and analyzed the dynamics in the apo and GW7647-bound structures of both the WT and the K57A/E77A/K96A triple mutant. We found that GW7647 binding causes little change in the FABP1 backbone, but solvent exposes several residues in the loops around the portal region, including Lys-57, Glu-77, and Lys-96. These residues also become more solvent-exposed upon binding of FABP1 with the endogenous PPARα agonist oleic acid. Together with previous observations, our findings suggest that GW7647 binding stabilizes a FABP1 conformation that promotes its interaction with PPARα. We conclude that full PPARα agonist activity of GW7647 requires FABP1-dependent transport and nuclear localization processes.
Collapse
Affiliation(s)
| | | | - Bonan Liu
- Drug Delivery, Disposition and Dynamics, and
| | | | | | | | | | | | | | - Patrick Genissel
- the Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Richard J Weaver
- the Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Laurent Vuillard
- the Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia and
| | | | | |
Collapse
|
5
|
Martin GG, Huang H, McIntosh AL, Kier AB, Schroeder F. Endocannabinoid Interaction with Human FABP1: Impact of the T94A Variant. Biochemistry 2017; 56:5147-5159. [DOI: 10.1021/acs.biochem.7b00647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, United States
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, United States
| | - Avery L. McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, United States
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, College Station, Texas 77843-4467, United States
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, United States
| |
Collapse
|