1
|
Izzi G, Paladino A, Oliva R, Barra G, Ruggiero A, Del Vecchio P, Vitagliano L, Graziano G. Destabilization of the D2 domain of Thermotoga maritima arginine binding protein induced by guanidinium thiocyanate and its counteraction by stabilizing agents. Protein Sci 2024; 33:e5146. [PMID: 39150147 PMCID: PMC11328109 DOI: 10.1002/pro.5146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
D2 is a structural and cooperative domain of Thermotoga maritima Arginine Binding Protein, that possesses a remarkable conformational stability, with a denaturation temperature of 102.6°C, at pH 7.4. The addition of potassium thiocyanate causes a significant decrease in the D2 denaturation temperature. The interactions of thiocyanate ions with D2 have been studied by means of isothermal titration calorimetry measurements and molecular dynamics simulations. It emerged that: (a) 20-30 thiocyanate ions interact with the D2 surface and are present in its first solvation shell; (b) each of them makes several contacts with protein groups, both polar and nonpolar ones. The addition of guanidinium thiocyanate causes a marked destabilization of the D2 native state, because both the ions are denaturing agents. However, on adding to the solution containing D2 and guanidinium thiocyanate a stabilizing agent, such as TMAO, sucrose or sodium sulfate, a significant increase in denaturation temperature occurs. The present results confirm that counteraction is a general phenomenon for globular proteins.
Collapse
Affiliation(s)
- Guido Izzi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Giovanni Barra
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | | | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Giuseppe Graziano
- Department of Science and Technology, University of Sannio, via Francesco de Sanctis snc, Benevento, Italy
| |
Collapse
|
2
|
Santhakumar V, Manuel Mascarenhas N. The role of C-terminal helix in the conformational transition of an arginine binding protein. J Struct Biol X 2022; 6:100071. [PMID: 36035778 PMCID: PMC9402392 DOI: 10.1016/j.yjsbx.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022] Open
Abstract
Probe the role of C-ter. helix (CTH) in conformational transition of TmArgBP. Presence of CTH almost doubles the barrier to access the closed-state. In the absence of CTH, the protein can fluctuate between the two conformations. CTH not only constraints the open-state conformation but also guides in accessing it.
The thermotoga maritima arginine binding protein (TmArgBP) is a periplasmic binding protein that has a short helix at the C-terminal end (CTH), which is swapped between the two chains. We apply a coarse-grained structure-based model (SBM) and all-atom MD simulation on this protein to understand the mechanism and the role of CTH in the conformational transition. When the results of SBM simulations of TmArgBP in the presence and absence of CTH are compared, we find that CTH is strategically located at the back of the binding pocket restraining the open-state conformation thereby disengaging access to the closed-state. We also ran all-atom MD simulations of open-state TmArgBP with and without CTH and discovered that in the absence of CTH the protein could reach the closed-state within 250 ns, while in its presence, the protein remained predominantly in its open-state conformation. In the simulation started from unliganded closed-state conformation without CTH, the protein exhibited multiple transitions between the two states, suggesting CTH as an essential structural element to stabilize the open-state conformation. In another simulation that began with an unliganded closed-state conformation with CTH, the protein was able to access the open-state. In this simulation the CTH was observed to reorient itself to interact with the protein emphasizing its role in assisting the conformational change. Based on our findings, we believe that CTH not only acts as a structural element that constraints the protein in its open-state but it may also guide the protein back to its open-state conformation upon ligand unbinding.
Collapse
|
3
|
Guanidinium binding to proteins: The intriguing effects on the D1 and D2 domains of Thermotoga maritima Arginine Binding Protein and a comprehensive analysis of the Protein Data Bank. Int J Biol Macromol 2020; 163:375-385. [PMID: 32629051 DOI: 10.1016/j.ijbiomac.2020.06.290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Thermotoga maritima Arginine Binding Protein has been extensively characterized because of its peculiar features and its possible use as a biosensor. In this characterization, deletion of the C-terminal helix to obtain the monomeric protein TmArgBP20-233 and dissection of the monomer in its two domains, D1 and D2, have been performed. In the present study the stability of these three forms against guanidinium chloride is investigated by means of circular dichroism and differential scanning calorimetry measurements. All three proteins show a high conformational stability; moreover, D1 shows an unusual behavior in the presence of low concentrations of guanidinium chloride. This finding has led us to investigate a possible binding interaction by means of isothermal titration calorimetry and X-ray crystallography; the results indicate that D1 is able to bind the guanidinium ion (GuH+), due to its similarity with the arginine terminal moiety. The analysis of the structural and dynamic properties of the D1-GuH+ complex indicates that the protein binds the ligand through multiple and diversified interactions. An exhaustive survey of the binding modes of GuH+ to proteins indicates that this is a rather common feature. These observations provide interesting insights into the effects that GuH+ is able to induce in protein structures.
Collapse
|
4
|
Smaldone G, Ruggiero A, Balasco N, Vitagliano L. Development of a Protein Scaffold for Arginine Sensing Generated through the Dissection of the Arginine-Binding Protein from Thermotoga maritima. Int J Mol Sci 2020; 21:ijms21207503. [PMID: 33053818 PMCID: PMC7589609 DOI: 10.3390/ijms21207503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Arginine is one of the most important nutrients of living organisms as it plays a major role in important biological pathways. However, the accumulation of arginine as consequence of metabolic defects causes hyperargininemia, an autosomal recessive disorder. Therefore, the efficient detection of the arginine is a field of relevant biomedical/biotechnological interest. Here, we developed protein variants suitable for arginine sensing by mutating and dissecting the multimeric and multidomain structure of Thermotoga maritima arginine-binding protein (TmArgBP). Indeed, previous studies have shown that TmArgBP domain-swapped structure can be manipulated to generate simplified monomeric and single domain scaffolds. On both these stable scaffolds, to measure tryptophan fluorescence variations associated with the arginine binding, a Phe residue of the ligand binding pocket was mutated to Trp. Upon arginine binding, both mutants displayed a clear variation of the Trp fluorescence. Notably, the single domain scaffold variant exhibited a good affinity (~3 µM) for the ligand. Moreover, the arginine binding to this variant could be easily reverted under very mild conditions. Atomic-level data on the recognition process between the scaffold and the arginine were obtained through the determination of the crystal structure of the adduct. Collectively, present data indicate that TmArgBP scaffolds represent promising candidates for developing arginine biosensors.
Collapse
Affiliation(s)
- Giovanni Smaldone
- IRCCS SDN, Via Emanuele Gianturco, 113 80143 Naples, Italy
- Correspondence: (G.S.); (A.R.)
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16. I-80134 Naples, Italy; (N.B.); (L.V.)
- Correspondence: (G.S.); (A.R.)
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16. I-80134 Naples, Italy; (N.B.); (L.V.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16. I-80134 Naples, Italy; (N.B.); (L.V.)
| |
Collapse
|
5
|
Jaworek MW, Ruggiero A, Graziano G, Winter R, Vitagliano L. On the extraordinary pressure stability of the Thermotoga maritima arginine binding protein and its folded fragments - a high-pressure FTIR spectroscopy study. Phys Chem Chem Phys 2020; 22:11244-11248. [PMID: 32400824 DOI: 10.1039/d0cp01618g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The arginine binding protein from T. maritima (ArgBP) exhibits several distinctive biophysical and structural properties. Here we show that ArgBP is also endowed with a ramarkable pressure stability as it undergoes minor structural changes only, even at 10 kbar. A similar stability is also observed for its folded fragments (truncated monomer and individual domains). A survey of literature data on the pressure stability of proteins highlights the uncommon behavior of ArgBP.
Collapse
Affiliation(s)
- Michel W Jaworek
- Faculty of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn Str. 4a, D-44227 Dortmund, Germany.
| | | | | | | | | |
Collapse
|
6
|
Smaldone G, Ruggiero A, Balasco N, Abuhammad A, Autiero I, Caruso D, Esposito D, Ferraro G, Gelardi ELM, Moreira M, Quareshy M, Romano M, Saaret A, Selvam I, Squeglia F, Troisi R, Kroon-Batenburg LMJ, Esposito L, Berisio R, Vitagliano L. The non-swapped monomeric structure of the arginine-binding protein from Thermotoga maritima. Acta Crystallogr F Struct Biol Commun 2019; 75:707-713. [PMID: 31702584 PMCID: PMC6839819 DOI: 10.1107/s2053230x1901464x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023] Open
Abstract
Domain swapping is a widespread oligomerization process that is observed in a large variety of protein families. In the large superfamily of substrate-binding proteins, non-monomeric members have rarely been reported. The arginine-binding protein from Thermotoga maritima (TmArgBP), a protein endowed with a number of unusual properties, presents a domain-swapped structure in its dimeric native state in which the two polypeptide chains mutually exchange their C-terminal helices. It has previously been shown that mutations in the region connecting the last two helices of the TmArgBP structure lead to the formation of a variety of oligomeric states (monomers, dimers, trimers and larger aggregates). With the aim of defining the structural determinants of domain swapping in TmArgBP, the monomeric form of the P235GK mutant has been structurally characterized. Analysis of this arginine-bound structure indicates that it consists of a closed monomer with its C-terminal helix folded against the rest of the protein, as typically observed for substrate-binding proteins. Notably, the two terminal helices are joined by a single nonhelical residue (Gly235). Collectively, the present findings indicate that extending the hinge region and conferring it with more conformational freedom makes the formation of a closed TmArgBP monomer possible. On the other hand, the short connection between the helices may explain the tendency of the protein to also adopt alternative oligomeric states (dimers, trimers and larger aggregates). The data reported here highlight the importance of evolutionary control to avoid the uncontrolled formation of heterogeneous and potentially harmful oligomeric species through domain swapping.
Collapse
Affiliation(s)
- Giovanni Smaldone
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- IRCCS SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Alessia Ruggiero
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Nicole Balasco
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Areej Abuhammad
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Ida Autiero
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Daniela Caruso
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Università degli Studi della Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Davide Esposito
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Giarita Ferraro
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | | | - Miguel Moreira
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Mussa Quareshy
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | - Maria Romano
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | - Annica Saaret
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | - Irwin Selvam
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | - Flavia Squeglia
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Romualdo Troisi
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | - Loes M. J. Kroon-Batenburg
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Crystal and Structural Chemistry, Utrecht University, Padualaan 8, Utrecht, The Netherlands
| | - Luciana Esposito
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Rita Berisio
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Luigi Vitagliano
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| |
Collapse
|
7
|
Kumar P, Kesari P, Kokane S, Ghosh DK, Kumar P, Sharma AK. Crystal structures of a putative periplasmic cystine-binding protein from Candidatus Liberibacter asiaticus: insights into an adapted mechanism of ligand binding. FEBS J 2019; 286:3450-3472. [PMID: 31063259 DOI: 10.1111/febs.14921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/20/2019] [Accepted: 05/03/2019] [Indexed: 11/28/2022]
Abstract
The amino acid-binding receptors, a component of ABC transporters, have evolved to cater to different specificities and functions. Of particular interest are cystine-binding receptors, which have shown broad specificity. In the present study, a putative periplasmic cystine-binding protein from Candidatus Liberibacter asiaticus (CLasTcyA) was characterized. Analysis of the CLasTcyA sequence and crystal structures in the ligand-bound state revealed novel features of CLasTcyA in comparison to related proteins. One of the unique features found in CLasTcyA structure was the positioning of the C-terminal extended loop of one chain very close to the substrate-binding site of the adjacent monomer in the asymmetric unit. The presence of a disulphide bond, unique to Candidatus Liberibacter family, holds the C-terminal extended loop in position. Analysis of the substrate-binding pocket of CLasTcyA suggested a broad specificity and a completely different orientation of the bound substrates in comparison to related protein structures. The open conformation for one of the two chains of the asymmetric unit in the Arg-bound structure revealed a limited open state (18.4°) for CLasTcyA as compared to open state of other related proteins (~ 60°). The strong interaction between Asp126 on helix-α5 of small domain and Arg82 (bigger domain) restricts the degree of opening in ligand-free open state. The dissociation constant of 1.26 μm by SPR and 3.7 μm by MST exhibited low affinity for the cystine. This is the first structural characterization of an l-cystine ABC transporter from plant pathogen and our results suggest that CLasTcyA may have evolved to cater to its specific needs for its survival in the host.
Collapse
Affiliation(s)
- Pranav Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Pooja Kesari
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Sunil Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | | |
Collapse
|
8
|
Balasco N, Smaldone G, Vigorita M, Del Vecchio P, Graziano G, Ruggiero A, Vitagliano L. The characterization of Thermotoga maritima Arginine Binding Protein variants demonstrates that minimal local strains have an important impact on protein stability. Sci Rep 2019; 9:6617. [PMID: 31036855 PMCID: PMC6488590 DOI: 10.1038/s41598-019-43157-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
The Ramachandran plot is a versatile and valuable tool that provides fundamental information for protein structure determination, prediction, and validation. The structural/thermodynamic effects produced by forcing a residue to adopt a conformation predicted to be forbidden were here explored using Thermotoga maritima Arginine Binding Protein (TmArgBP) as model. Specifically, we mutated TmArgBP Gly52 that assumes a conformation believed to be strictly disallowed for non-Gly residues. Surprisingly, the crystallographic characterization of Gly52Ala TmArgBP indicates that the structural context forces the residue to adopt a non-canonical conformation never observed in any of the high-medium resolution PDB structures. Interestingly, the inspection of this high resolution structure demonstrates that only minor alterations occur. Nevertheless, experiments indicate that Gly52 replacements in TmArgBP produce destabilizations comparable to those observed upon protein truncation or dissection in domains. Notably, we show that force-fields commonly used in computational biology do not reproduce this non-canonical state. Using TmArgBP as model system we here demonstrate that the structural context may force residues to adopt conformations believed to be strictly forbidden and that barely detectable alterations produce major destabilizations. Present findings highlight the role of subtle strains in governing protein stability. A full understanding of these phenomena is essential for an exhaustive comprehension of the factors regulating protein structures.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, Italy
| | | | - Marilisa Vigorita
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, Benevento, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, Napoli, Italy
| | - Giuseppe Graziano
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, Benevento, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, Italy.
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, Italy.
| |
Collapse
|
9
|
Smaldone G, Balasco N, Vigorita M, Ruggiero A, Cozzolino S, Berisio R, Del Vecchio P, Graziano G, Vitagliano L. Domain communication in Thermotoga maritima Arginine Binding Protein unraveled through protein dissection. Int J Biol Macromol 2018; 119:758-769. [PMID: 30059738 DOI: 10.1016/j.ijbiomac.2018.07.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
Abstract
Substrate binding proteins represent a large protein family that plays fundamental roles in selective transportation of metabolites across membrane. The function of these proteins relies on the relative motions of their two domains. Insights into domain communication in this class of proteins have been here collected using Thermotoga maritima Arginine Binding Protein (TmArgBP) as model system. TmArgBP was dissected into two domains (D1 and D2) that were exhaustively characterized using a repertoire of different experimental and computational techniques. Indeed, stability, crystalline structure, ability to recognize the arginine substrate, and dynamics of the two individual domains have been here studied. Present data demonstrate that, although in the parent protein both D1 and D2 cooperate for the arginine anchoring; only D1 is intrinsically able to bind the substrate. The implications of this finding on the mechanism of arginine binding and release by TmArgBP have been discussed. Interestingly, both D1 and D2 retain the remarkable thermal/chemical stability of the parent protein. The analysis of the structural and dynamic properties of TmArgBP and of the individual domains highlights possible routes of domain communication. Finally, this study generated two interesting molecular tools, the two stable isolated domains that could be used in future investigations.
Collapse
Affiliation(s)
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Marilisa Vigorita
- Department of Sciences and Technologies, Università del Sannio, via Port'arsa 11, 82100 Benevento, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Serena Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126 Napoli, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126 Napoli, Italy
| | - Giuseppe Graziano
- Department of Sciences and Technologies, Università del Sannio, via Port'arsa 11, 82100 Benevento, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Napoli, Italy.
| |
Collapse
|
10
|
Balasco N, Smaldone G, Ruggiero A, De Simone A, Vitagliano L. Local structural motifs in proteins: Detection and characterization of fragments inserted in helices. Int J Biol Macromol 2018; 118:1924-1930. [PMID: 30017977 DOI: 10.1016/j.ijbiomac.2018.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 11/26/2022]
Abstract
The global/local fold of protein structures is stabilized by a variety of specific interactions. A primary role in this context is played by hydrogen bonds. In order to identify novel motifs in proteins, we searched Protein Data Bank structures looking for backbone H-bonds formed by NH groups of two (or more) consecutive residues with consecutive CO groups of distant residues in the sequence. The present analysis unravels the occurrence of recurrent structural motifs that, to the best of our knowledge, had not been characterized in literature. Indeed, these H-bonding patterns are found (i) in a specific parallel β-sheet capping, (ii) in linking of β-hairpins to α-helices, and (iii) in α-helix insertions. Interestingly, structural analyses of these motifs indicate that Gly residues frequently occupy prominent positions. The formation of these motifs is likely favored by the limited propensity of Gly to be embodied in helices/sheets. Of particular interest is the motif corresponding to insertions in helices that was detected in 1% of analyzed structures. Inserted fragments may assume different structures and aminoacid compositions and usually display diversified evolutionary conservation. Since inserted regions are physically separated from the rest of the protein structure, they represent hot spots for ad-hoc protein functionalization.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy.
| | | | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College South Kensington Campus, London SW7 2AZ, UK
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy.
| |
Collapse
|