1
|
Cathoud G, Hashemi M, Lyubchenko Y, Simões P. Uncovering Amyloid-β Interactions: Gray versus White Matter. ACS Chem Neurosci 2025; 16:1433-1441. [PMID: 40143654 DOI: 10.1021/acschemneuro.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025] Open
Abstract
Alzheimer's disease is characterized by the accumulation of amyloid plaques in the brain. Recent studies suggest that amyloid-β (Aβ) peptides interact with cell membranes, potentially catalyzing plaque formation. However, the effect of varying cell membrane compositions on this catalytic process requires further investigation. Using molecular dynamics simulations, we demonstrate that a model gray matter membrane significantly influences the secondary structure of β-amyloid peptides. Notably, residues Asp1 and Glu22 play crucial roles in the membrane interaction. Glutamic acid at position 22, located in the middle of the peptide chain, appears to promote the formation of β-hairpin conformations, which are critical for aggregation. Additionally, our simulations reveal that the model white matter membrane allows a spontaneous insertion of segments of the peptide into the membrane, suggesting that membrane interaction not only alters the peptide structure but may also compromise membrane integrity. Our results show that the different membrane compositions in the brain may play different roles when interacting with β-amyloid peptides.
Collapse
Affiliation(s)
- Gabriel Cathoud
- CERES, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Mohtadin Hashemi
- Department of Physics, Auburn University, Auburn, Alabama 36849-5318, United States
| | - Yuri Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Pedro Simões
- CERES, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| |
Collapse
|
2
|
Hooten M, Murthy NS, Pal N, Khare SD, Gormley AJ, Dutt M. Martini 3 coarse-grained model of enzymes: Framework with validation by all-atom simulations and x-ray diffraction measurements. J Chem Phys 2025; 162:135104. [PMID: 40177969 PMCID: PMC11970941 DOI: 10.1063/5.0247634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Recent experiments have shown that complexation with a stabilizing compound can preserve enzyme activity in harsh environments. Such complexation is believed to be driven by noncovalent interactions at the enzyme surface, including hydrophobicity and electrostatics. Molecular modeling of these interactions is costly at the all-atom scale due to the long time scales and large particle counts needed to characterize binding. Protein structure at the scale of amino acid residues is parsimoniously represented by a coarse-grained model in which one particle represents several atoms, significantly reducing the cost of simulation. Coarse-grained models may then be used to generate reduced surface descriptions to underlie detailed theories of surface adhesion. In this study, we present two coarse-grained enzyme models-lipase and dehalogenase-that have been prepared using the Martini 3 top-down modeling framework. We simulate each enzyme in aqueous solution and calculate the statistics of protein surface features and shape descriptors. The values from the coarse-grained data are compared with the same calculations performed on all-atom reference systems, revealing key similarities of surface chemistry at the two scales. Structural measures are calculated from the all-atom reference systems and compared with estimates from small-angle x-ray scattering experiments, with good agreement between the two. The described procedures of modeling and analysis comprise a framework for the development of coarse-grained models of protein surfaces with validation to experiment.
Collapse
Affiliation(s)
- Mason Hooten
- Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - N. Sanjeeva Murthy
- Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Nityananda Pal
- Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Sagar D. Khare
- Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Adam J. Gormley
- Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Meenakshi Dutt
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
3
|
Erdogan O, Iyigun C, Aydın Son Y. EnSCAN: ENsemble Scoring for prioritizing CAusative variaNts across multiplatform GWASs for late-onset alzheimer's disease. BioData Min 2025; 18:20. [PMID: 40038746 DOI: 10.1186/s13040-025-00436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is a progressive and complex neurodegenerative disorder of the aging population. LOAD is characterized by cognitive decline, such as deterioration of memory, loss of intellectual abilities, and other cognitive domains resulting from due to traumatic brain injuries. Alzheimer's Disease (AD) presents a complex genetic etiology that is still unclear, which limits its early or differential diagnosis. The Genome-Wide Association Studies (GWAS) enable the exploration of individual variants' statistical interactions at candidate loci, but univariate analysis overlooks interactions between variants. Machine learning (ML) algorithms can capture hidden, novel, and significant patterns while considering nonlinear interactions between variants to understand the genetic predisposition for complex genetic disorders. When working on different platforms, majority voting cannot be applied because the attributes differ. Hence, a new post-ML ensemble approach was developed to select significant SNVs via multiple genotyping platforms. We proposed the EnSCAN framework using a new algorithm to ensemble selected variants even from different platforms to prioritize candidate causative loci, which consequently helps improve ML results by combining the prior information captured from each dataset. The proposed ensemble algorithm utilizes the chromosomal locations of SNVs by mapping to cytogenetic bands, along with the proximities between pairs and multimodel Random Forest (RF) validations to prioritize SNVs and candidate causative genes for LOAD. The scoring method is scalable and can be applied to any multiplatform genotyping study. We present how the proposed EnSCAN scoring algorithm prioritizes candidate causative variants related to LOAD among three GWAS datasets.
Collapse
Affiliation(s)
- Onur Erdogan
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, 06800, Türkiye
| | - Cem Iyigun
- Department of Industrial Engineering, METU, Ankara, 06800, Türkiye
| | - Yeşim Aydın Son
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, 06800, Türkiye.
- Neuroscience and Neurotechnology Center of Excellence, ODTÜ-NÖROM, Ankar, 06560, Türkiye.
| |
Collapse
|
4
|
Li W, Zhou Y, Zhang X, He S, Yang L, Cao X, Tian ZQ. Insights into the Assembly of Peptides Catalyzed by Polysaccharides. J Phys Chem B 2025; 129:487-495. [PMID: 39729549 DOI: 10.1021/acs.jpcb.4c05751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Nucleation is a critical step that determines the assembly pathway and the structure and functions of the peptide assemblies. However, the dynamic evolution of interactions between nucleating agents and peptides, as well as between peptides themselves during the nucleation process, remains elusive. Herein, we show that the heterogeneous nucleating agent carboxymethylcellulose (CMC) can promote the nucleation of Aβ16-20 (KF) peptide. The Förster resonance energy transfer (FRET) technology was used to unveil the interaction dynamics between the CMC and KF peptide. Initially, CMC enriches KF monomers through weak nondirectional electrostatic interactions. The electrostatic screening reduces the electrostatic repulsion between KF molecules. Subsequently, KF-KF interactions become dominant, leading to the dissociation of KF from the CMC and nucleation. By adjustment of the adding time, dosage, size, and active sites of CMC, the assembly kinetics of KF can be effectively controlled. This study helps gain a deep understanding of the early heterogeneous nucleation process of peptide assembly and provides valuable guidance for the rational design of efficient nucleating agents for peptide assembly toward functional materials.
Collapse
Affiliation(s)
- Wang Li
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yang Zhou
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xinran Zhang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Sheng He
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
5
|
Jain M, Matysiak S. Dual Role of Anionic Lipids in Amyloid Aggregation. J Phys Chem B 2024; 128:10831-10840. [PMID: 39450869 DOI: 10.1021/acs.jpcb.4c05636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's, affect millions worldwide and share a common feature: the aggregation of intrinsically disordered proteins into toxic oligomers that interact with cell membranes. In Alzheimer's disease (AD), amyloid-beta (Aβ) peptides accumulate and bind to plasma membranes, potentially disrupting cellular function. The complex interplay between amyloidogenic peptides and lipid membranes, particularly the role of anionic lipids, is crucial in disease pathogenesis but challenging to characterize experimentally. The literature presents conflicting results on the influence of anionic lipids on peptide aggregation kinetics, highlighting a knowledge gap. To address this, we used coarse-grained molecular dynamics (CG-MD) simulations to study interactions between a model amyloidogenic peptide, amyloid-β's K16LVFFAE22 fragment (Aβ16-22), and mixed lipid bilayers. We used phosphatidylserine (PS) and phosphatidylcholine (PC) as representative anionic and zwitterionic lipids, respectively, examining the mixed bilayer compositions of 0% PS-100% PC, 10% PS-90% PC, and 30% PS-70% PC. Our simulations revealed that membranes enriched in anionic lipids enhance peptide adsorption and interaction kinetics. The aggregation dynamics was modulated by two competing factors: increased local peptide concentration near negatively charged membranes, which promoted aggregation, and peptide-lipid interactions, which slowed it down. Higher percentages of anionic lipids led to smaller and more ordered aggregates and enhanced lipid demixing, leading to the formation of PS clusters. These findings contribute to understanding membrane-mediated peptide aggregation in neurodegenerative disorders, potentially guiding new therapeutic strategies targeting the early stages of protein aggregation in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Meenal Jain
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Silvina Matysiak
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
Ahanger IA, Dar TA. Small molecule modulators of alpha-synuclein aggregation and toxicity: Pioneering an emerging arsenal against Parkinson's disease. Ageing Res Rev 2024; 101:102538. [PMID: 39389237 DOI: 10.1016/j.arr.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is primarily characterized by loss of dopaminergic neurons in the substantia nigra pars compacta region of the brain and accumulation of aggregated forms of alpha-synuclein (α-Syn), an intrinsically disordered protein, in the form of Lewy Bodies and Lewy Neurites. Substantial evidences point to the aggregated/fibrillar forms of α-Syn as a central event in PD pathogenesis, underscoring the modulation of α-Syn aggregation as a promising strategy for PD treatment. Consequently, numerous anti-aggregation agents, spanning from small molecules to polymers, have been scrutinized for their potential to mitigate α-Syn aggregation and its associated toxicity. Among these, small molecule modulators like osmoprotectants, polyphenols, cellular metabolites, metals, and peptides have emerged as promising candidates with significant potential in PD management. This article offers a comprehensive overview of the effects of these small molecule modulators on the aggregation propensity and associated toxicity of α-Syn and its PD-associated mutants. It serves as a valuable resource for identifying and developing potent, non-invasive, non-toxic, and highly specific small molecule-based therapeutic arsenal for combating PD. Additionally, it raises pertinent questions aimed at guiding future research endeavours in the field of α-Syn aggregation remodelling.
Collapse
Affiliation(s)
- Ishfaq Ahmad Ahanger
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
7
|
Monteiro Neto JR, Lima VDA, Follmer C. Fibrillation of α-synuclein triggered by bacterial endotoxin and lipid vesicles is modulated by N-terminal acetylation and familial Parkinson's disease mutations. FEBS J 2024; 291:1151-1167. [PMID: 38069536 DOI: 10.1111/febs.17027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
It has been hypothesized that --Parkinson's disease (PD) may be initiated in the gastrointestinal tract, before manifesting in the central nervous system. In this respect, it was demonstrated that lipopolysaccharide (LPS), an endotoxin from gram-negative bacteria, accelerates the in vitro formation of α-synuclein (aSyn) fibrils, whose intracellular deposits is a histological hallmark of the degeneration of dopaminergic neurons in PD. Herein, N-terminal acetylation and missense mutations of aSyn (A30P, A53T, E46K, H50Q and G51D) linked to rare, early-onset forms of familial PD were investigated regarding their effect on aSyn aggregation stimulated by either LPS or small unilamellar lipid vesicles (SUVs). Our findings indicated that LPS as well as SUVs induce the fibrillation of N-terminally acetylated wild-type aSyn (Ac-aSyn-WT) more remarkably than the non-acetylated protein, while the LPS-free protein alone did not undergo fibrillation under our assay conditions. In addition, with the exception of A30P, PD mutations increased the fibrillation of Ac-aSyn in the presence of LPS compared with Ac-aSyn-WT. The most pronounced effect of LPS was noticed for A53T, as observed when either Thioflavin-T or JC-1 were used as fluorescent probes for fibrils. Overall, our results suggest for the first time the existence of a synergy between LPS and PD mutations/N-terminal acetylation toward aSyn fibrillation.
Collapse
Affiliation(s)
- José Raphael Monteiro Neto
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Vanderlei de Araújo Lima
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Cristian Follmer
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Di Bartolo AL, Caparotta M, Masone D. Intrinsic Disorder in α-Synuclein Regulates the Exocytotic Fusion Pore Transition. ACS Chem Neurosci 2023. [PMID: 37192400 DOI: 10.1021/acschemneuro.3c00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Today, it is widely accepted that intrinsic disorder is strongly related to the cell cycle, during mitosis, differentiation, and apoptosis. Of particular interest are hybrid proteins possessing both structured and unstructured domains that are critical in human health and disease, such as α-synuclein. In this work, we describe how α-synuclein interacts with the nascent fusion pore as it evolves toward expansion. We unveil the key role played by its intrinsically disordered region as a thermodynamic regulator of the nucleation-expansion energy barrier. By analyzing a truncated variant of α-synuclein that lacks the disordered region, we find that the landscape of protein interactions with PIP2 and POPS lipids is highly altered, ultimately increasing the energy cost for the fusion pore to transit from nucleation to expansion. We conclude that the intrinsically disordered region in full-length α-synuclein recognizes and allocates pivotal protein:lipid interactions during membrane remodeling in the first stages of the fusion pore.
Collapse
Affiliation(s)
- Ary Lautaro Di Bartolo
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| | - Marcelo Caparotta
- Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| |
Collapse
|
9
|
Lyubchenko YL. Protein Self-Assembly at the Liquid-Surface Interface. Surface-Mediated Aggregation Catalysis. J Phys Chem B 2023; 127:1880-1889. [PMID: 36812408 DOI: 10.1021/acs.jpcb.2c09029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Protein self-assembly into aggregates of various morphologies is a ubiquitous phenomenon in physical chemistry and biophysics. The critical role of amyloid assemblies in the development of diseases, neurodegenerative diseases especially, highlights the importance of understanding the mechanistic picture of the self-assembly process. The translation of this knowledge to the development of efficient preventions and treatments for diseases requires designing experiments at conditions mimicking those in vivo. This Perspective reviews data satisfying two major requirements: membrane environment and physiologically low concentrations of proteins. Recent progress in experiments and computational modeling resulted in a novel model for the amyloid aggregation process at the membrane-liquid interface. The self-assembly under such conditions has a number of critical features, further understanding of which can lead to the development of efficient preventive means and treatments for Alzheimer's and other devastating neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
10
|
Qi Z, Wan M, Zhang J, Li Z. Influence of Cholesterol on the Membrane Binding and Conformation of α-Synuclein. J Phys Chem B 2023; 127:1956-1964. [PMID: 36812386 DOI: 10.1021/acs.jpcb.2c08077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The α-Synuclein (α-Syn) plays an important role in the pathology of Parkinson's disease (PD), and its oligomers and fibrils are toxic to the nervous system. As organisms age, the cholesterol content in biological membranes increases, which is a potential cause of PD. Cholesterol may affect the membrane binding of α-Syn and its abnormal aggregation, but the mechanism remains unclear. Here, we present our molecular dynamics simulation studies on the interaction between α-Syn and lipid membranes, with or without cholesterol. It is demonstrated that cholesterol provides additional hydrogen bond interaction with α-Syn; however, the coulomb interaction and hydrophobic interaction between α-Syn and lipid membranes could be weakened by cholesterol. In addition, cholesterol leads to the shrinking of lipid packing defects and the decrease of lipid fluidity, thereby shortening the membrane binding region of α-Syn. Under these multifaceted effects of cholesterol, membrane-bound α-Syn shows signs of forming a β-sheet structure, which may further induce the formation of abnormal α-Syn fibrils. These results provide important information for the understanding of membrane binding of α-Syn, and they are expected to promote the bridging between cholesterol and the pathological aggregation of α-Syn.
Collapse
Affiliation(s)
- Ziqiang Qi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Menglin Wan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
11
|
Luchini A, Tidemand FG, Johansen NT, Sebastiani F, Corucci G, Fragneto G, Cárdenas M, Arleth L. Dark peptide discs for the investigation of membrane proteins in supported lipid bilayers: the case of synaptobrevin 2 (VAMP2). NANOSCALE ADVANCES 2022; 4:4526-4534. [PMID: 36341300 PMCID: PMC9595196 DOI: 10.1039/d2na00384h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Supported lipid bilayers (SLBs) are commonly used as model systems mimicking biological membranes. Recently, we reported a new method to produce SLBs with incorporated membrane proteins, which is based on the application of peptide discs [Luchini et al., Analytical Chemistry, 2020, 92, 1081-1088]. Peptide discs are small discoidal particles composed of a lipid core and an outer belt of self-assembled 18A peptides. SLBs including membrane proteins can be formed by depositing the peptide discs on a solid support and subsequently removing the peptide by buffer rinsing. Here, we introduce a new variant of the 18A peptide, named dark peptide (d18A). d18A exhibits UV absorption at 214 nm, whereas the absorption at 280 nm is negligible. This improves sample preparation as it enables a direct quantification of the membrane protein concentration in the peptide discs by measuring UV absorption at 280 nm. We describe the application of the peptide discs prepared with d18A (dark peptide discs) to produce SLBs with a membrane protein, synaptobrevin 2 (VAMP2). The collected data showed the successful formation of SLBs with high surface coverage and incorporation of VAMP2 in a single orientation with the extramembrane domain exposed towards the bulk solvent. Compared to 18A, we found that d18A was more efficiently removed from the SLB. Our data confirmed the structural organisation of VAMP2 as including both α-helical and β-sheet secondary structure. We further verified the orientation of VAMP2 in the SLBs by characterising the binding of VAMP2 with α-synuclein. These results point at the produced SLBs as relevant membrane models for biophysical studies as well as nanostructured biomaterials.
Collapse
Affiliation(s)
| | - Frederik Grønbæk Tidemand
- Department of Plant and Environmental Sciences, University of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Nicolai Tidemand Johansen
- Department of Plant and Environmental Sciences, University of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Federica Sebastiani
- Biofilms Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University Per Albin Hanssons Väg 35 21432 Malmö Sweden
| | - Giacomo Corucci
- Institut Laue-Langevin 71 Avenue des Martyrs, BP 156 38042 Grenoble France
- Université Grenoble Alpes, Ecole Doctorale de Physique 110 Rue de la Chimie 38400 Saint-Martin-d'Hères France
| | - Giovanna Fragneto
- Institut Laue-Langevin 71 Avenue des Martyrs, BP 156 38042 Grenoble France
- Université Grenoble Alpes, Ecole Doctorale de Physique 110 Rue de la Chimie 38400 Saint-Martin-d'Hères France
| | - Marité Cárdenas
- Biofilms Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University Per Albin Hanssons Väg 35 21432 Malmö Sweden
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| |
Collapse
|
12
|
Ma X, Li X, Wang W, Zhang M, Yang B, Miao Z. Phosphatidylserine, inflammation, and central nervous system diseases. Front Aging Neurosci 2022; 14:975176. [PMID: 35992593 PMCID: PMC9382310 DOI: 10.3389/fnagi.2022.975176] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylserine (PS) is an anionic phospholipid in the eukaryotic membrane and is abundant in the brain. Accumulated studies have revealed that PS is involved in the multiple functions of the brain, such as activation of membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement. Those functions of PS are related to central nervous system (CNS) diseases. In this review, we discuss the metabolism of PS, the anti-inflammation function of PS in the brain; the alterations of PS in different CNS diseases, and the possibility of PS to serve as a therapeutic agent for diseases. Clinical studies have showed that PS has no side effects and is well tolerated. Therefore, PS and PS liposome could be a promising supplementation for these neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiaojing Li
- Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Wenjuan Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Meng Zhang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Bo Yang,
| | - Zhigang Miao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Zhigang Miao,
| |
Collapse
|
13
|
Sahoo S, Padhy AA, Kumari V, Mishra P. Role of Ubiquitin-Proteasome and Autophagy-Lysosome Pathways in α-Synuclein Aggregate Clearance. Mol Neurobiol 2022; 59:5379-5407. [PMID: 35699874 DOI: 10.1007/s12035-022-02897-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022]
Abstract
Synuclein aggregation in neuronal cells is the primary underlying cause of synucleinopathies. Changes in gene expression patterns, structural modifications, and altered interactions with other cellular proteins often trigger aggregation of α-synuclein, which accumulates as oligomers or fibrils in Lewy bodies. Although fibrillar forms of α-synuclein are primarily considered pathological, recent studies have revealed that even the intermediate states of aggregates are neurotoxic, complicating the development of therapeutic interventions. Autophagy and ubiquitin-proteasome pathways play a significant role in maintaining the soluble levels of α-synuclein inside cells; however, the heterogeneous nature of the aggregates presents a significant bottleneck to its degradation by these cellular pathways. With studies focused on identifying the proteins that modulate synuclein aggregation and clearance, detailed mechanistic insights are emerging about the individual and synergistic effects of these degradation pathways in regulating soluble α-synuclein levels. In this article, we discuss the impact of α-synuclein aggregation on autophagy-lysosome and ubiquitin-proteasome pathways and the therapeutic strategies that target various aspects of synuclein aggregation or degradation via these pathways. Additionally, we also highlight the natural and synthetic compounds that have shown promise in alleviating the cellular damage caused due to synuclein aggregation.
Collapse
Affiliation(s)
- Subhashree Sahoo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Amrita Arpita Padhy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Varsha Kumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Parul Mishra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
14
|
Hashemi M, Banerjee S, Lyubchenko YL. Free Cholesterol Accelerates Aβ Self-Assembly on Membranes at Physiological Concentration. Int J Mol Sci 2022; 23:ijms23052803. [PMID: 35269945 PMCID: PMC8911190 DOI: 10.3390/ijms23052803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
The effects of membranes on the early-stage aggregation of amyloid β (Aβ) have come to light as potential mechanisms by which neurotoxic species are formed in Alzheimer’s disease. We have shown that direct Aβ-membrane interactions dramatically enhance the Aβ aggregation, allowing for oligomer assembly at physiologically low concentrations of the monomer. Membrane composition is also a crucial factor in this process. Our results showed that apart from phospholipids composition, cholesterol in membranes significantly enhances the aggregation kinetics. It has been reported that free cholesterol is present in plaques. Here we report that free cholesterol, along with its presence inside the membrane, further accelerate the aggregation process by producing aggregates more rapidly and of significantly larger sizes. These aggregates, which are formed on the lipid bilayer, are able to dissociate from the surface and accumulate in the bulk solution; the presence of free cholesterol accelerates this dissociation as well. All-atom molecular dynamics simulations show that cholesterol binds Aβ monomers and significantly changes the conformational sampling of Aβ monomer; more than doubling the fraction of low-energy conformations compared to those in the absence of cholesterol, which can contribute to the aggregation process. The results indicate that Aβ-lipid interaction is an important factor in the disease prone amyloid assembly process.
Collapse
Affiliation(s)
- Mohtadin Hashemi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA; (M.H.); (S.B.)
| | - Siddhartha Banerjee
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA; (M.H.); (S.B.)
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, AL 35487, USA
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA; (M.H.); (S.B.)
- Correspondence:
| |
Collapse
|
15
|
Jadavi S, Canepa E, Diaspro A, Canale C, Relini A, Dante S. α-Synuclein interacts differently with membranes mimicking the inner and outer leaflets of neuronal membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183814. [PMID: 34774499 DOI: 10.1016/j.bbamem.2021.183814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022]
Abstract
The toxicity of α-synuclein (α-syn), the amyloidogenic protein responsible for Parkinson's disease, is likely related to its interaction with the asymmetric neuronal membrane. α-Syn exists as cytoplasmatic and as extracellular protein as well. To shed light on the different interactions occurring at the different α-syn localizations, we have here modelled the external and internal membrane leaflets of the neuronal membrane with two complex lipid mixtures, characterized by phase coexistence and with negative charge confined to either the ordered or the disordered phase, respectively. To this purpose, we selected a five-component (DOPC/SM/DOPE/DOPS/chol) and a four-component (DOPC/SM/GM1/chol) lipid mixtures, which contained the main membrane lipid constituents and exhibited a phase separation with formation of ordered domains. We have compared the action of α-syn in monomeric form and at different concentrations (1 nM, 40 nM, and 200 nM) with respect to lipid systems with different composition and shape by AFM, QCM-D, and vesicle leakage experiments. The experiments coherently showed a higher stability of the membranes composed by the internal leaflet mixture to the interaction with α-syn. Damage to membranes made of the external leaflet mixture was detected in a concentration-dependent manner. Interestingly, the membrane damage was related to the fluidity of the lipid domains and not to the presence of negatively charged lipids.
Collapse
Affiliation(s)
- Samira Jadavi
- Nanoscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genova, Italy; Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Ester Canepa
- Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Alberto Diaspro
- Nanoscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genova, Italy; Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Claudio Canale
- Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Annalisa Relini
- Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy.
| | - Silvia Dante
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
16
|
Hashemi M, Lyubchenko YL. Hybrid resolution molecular dynamics simulations of amyloid proteins interacting with membranes. Methods 2022; 197:89-96. [PMID: 33727072 PMCID: PMC8435541 DOI: 10.1016/j.ymeth.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/08/2021] [Indexed: 01/03/2023] Open
Abstract
A broad range of human diseases, including Alzheimer's and Parkinson's diseases, arise from or have as key players intrinsically disordered proteins. The aggregation of these amyloid proteins into fibrillar aggregates are the key events of such diseases. Characterizing the conformation dynamics of the proteins involved is crucial for understanding the molecular mechanisms of aggregation, which in turn is important for drug development efforts against these diseases. Computational approaches have provided extensive detail about some steps of the aggregation process, however the biologically relevant elements responsible for the aggregation and or aggregation propagation have not been fully characterized. Here we describe a hybrid resolution molecular dynamics simulation method that can be employed to investigate the interaction of amyloid proteins with lipid membranes, shown to dramatically accelerate the aggregation propensity of amyloid proteins. The hybrid resolution method enables routine and accurate simulation of multi-protein and complex membrane systems, mimicking biologically relevant lipid membranes, on microsecond time scales. The hybrid resolution method was applied to computer modeling of the interactions of α -synuclein protein with a mixed lipid bilayer.
Collapse
|
17
|
Shahzadi S, Yasir M, Aftab B, Babar S, Hassan M. Exploration of Protein Aggregations in Parkinson's Disease Through Computational Approaches and Big Data Analytics. Methods Mol Biol 2022; 2340:449-467. [PMID: 35167085 DOI: 10.1007/978-1-0716-1546-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein aggregation has been implicated in numerous neurodegenerative disorders whose etiologies are poorly understood, and for which there are no effective treatments. Here we show that the computational approaches may help us to better understand the basics of Parkinson's disease (PD). The high-resolution structural, dynamical, and mechanistic insights delivered by computational studies of protein aggregation have a unique potential to enable the rational manipulation of oligomer formation. Additionally, big data and machine learning methods may provide valuable insights to better understand the nature of proteins involved in PD and their aggregative behavior for the betterment of PD treatment.
Collapse
Affiliation(s)
- Saba Shahzadi
- Institute of Molecular Sciences and Bioinformatics, Lahore, Pakistan
| | - Muhammad Yasir
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Bisma Aftab
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sumbal Babar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
- Battelle Center for Mathematical Medicine, Nationwide Children Hospital & Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
18
|
Banerjee S, Lyubchenko YL. Topographically smooth and stable supported lipid bilayer for high-resolution AFM studies. Methods 2022; 197:13-19. [PMID: 33609699 PMCID: PMC8371085 DOI: 10.1016/j.ymeth.2021.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/03/2023] Open
Abstract
The cellular membrane has been identified to play a critical role in various biological processes including the assembly of biological systems. Membranes are complex, primarily two-dimensional assemblies with varied lipid compositions depending on the particular region of the cell. Supported lipid bilayers are considered as appropriate models for physio-chemical studies of membranes including numerous single molecule techniques. Atomic force microscopy (AFM) as a topographic technique is a fully appropriate single molecule technique capable of direct observation of molecular processes on membranes. However, reliable experimental AFM studies require the preparation of the bilayer with a sub-nanometer smooth morphology, which remains stable over long-time observation. Here we present the methodology, which allows one to prepare a smooth, stable, structurally homogeneous lipid bilayer without the presence of any trapped vesicles. We described the application of such lipid bilayers to probe time-dependent early stages of aggregation of monomeric amyloid proteins. Importantly, the proposed methodology can be extended to bilayers with various compositions, by incorporating different lipids for on-membrane aggregation study including cholesterol. Furthermore, this methodology development allowed us to monitor the aggregation of amyloid protein at its physiologically relevant low protein concentration. The flexibility of altering the membrane composition allows to identify the specific role of a particular lipid towards the aggregation kinetics, revealing the plausible mechanism of disease development.
Collapse
|
19
|
Serratos IN, Hernández-Pérez E, Campos C, Aschner M, Santamaría A. An Update on the Critical Role of α-Synuclein in Parkinson's Disease and Other Synucleinopathies: from Tissue to Cellular and Molecular Levels. Mol Neurobiol 2021; 59:620-642. [PMID: 34750787 DOI: 10.1007/s12035-021-02596-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
The aggregation of alpha-synuclein (α-Syn) plays a critical role in the development of Parkinson's disease (PD) and other synucleinopathies. α-Syn, which is encoded by the SNCA gene, is a lysine-rich soluble amphipathic protein normally expressed in neurons. Located in the cytosolic domain, this protein has the ability to remodel itself in plasma membranes, where it assumes an alpha-helix conformation. However, the protein can also adopt another conformation rich in cross-beta sheets, undergoing mutations and post-translational modifications, then leading the protein to an unusual aggregation in the form of Lewy bodies (LB), which are cytoplasmic inclusions constituted predominantly by α-Syn. Pathogenic mechanisms affecting the structural and functional stability of α-Syn - such as endoplasmic reticulum stress, Golgi complex fragmentation, disfunctional protein degradation systems, aberrant interactions with mitochondrial membranes and nuclear DNA, altered cytoskeleton dynamics, disrupted neuronal plasmatic membrane, dysfunctional vesicular transport, and formation of extracellular toxic aggregates - contribute all to the pathogenic progression of PD and synucleinopathies. In this review, we describe the collective knowledge on this topic and provide an update on the critical role of α-Syn aggregates, both at the cellular and molecular levels, in the deregulation of organelles affecting the cellular homeostasis and leading to neuronal cell death in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Iris N Serratos
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Elizabeth Hernández-Pérez
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Carolina Campos
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, SSA, 14269, Mexico City, Mexico.
| |
Collapse
|
20
|
Sarchione A, Marchand A, Taymans JM, Chartier-Harlin MC. Alpha-Synuclein and Lipids: The Elephant in the Room? Cells 2021; 10:2452. [PMID: 34572099 PMCID: PMC8467310 DOI: 10.3390/cells10092452] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
Since the initial identification of alpha-synuclein (α-syn) at the synapse, numerous studies demonstrated that α-syn is a key player in the etiology of Parkinson's disease (PD) and other synucleinopathies. Recent advances underline interactions between α-syn and lipids that also participate in α-syn misfolding and aggregation. In addition, increasing evidence demonstrates that α-syn plays a major role in different steps of synaptic exocytosis. Thus, we reviewed literature showing (1) the interplay among α-syn, lipids, and lipid membranes; (2) advances of α-syn synaptic functions in exocytosis. These data underscore a fundamental role of α-syn/lipid interplay that also contributes to synaptic defects in PD. The importance of lipids in PD is further highlighted by data showing the impact of α-syn on lipid metabolism, modulation of α-syn levels by lipids, as well as the identification of genetic determinants involved in lipid homeostasis associated with α-syn pathologies. While questions still remain, these recent developments open the way to new therapeutic strategies for PD and related disorders including some based on modulating synaptic functions.
Collapse
Affiliation(s)
| | | | | | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172—LilNCog—Lille Neuroscience and Cognition, F-59000 Lille, France; (A.S.); (A.M.); (J.-M.T.)
| |
Collapse
|
21
|
Manna M, Murarka RK. Polyunsaturated Fatty Acid Modulates Membrane-Bound Monomeric α-Synuclein by Modulating Membrane Microenvironment through Preferential Interactions. ACS Chem Neurosci 2021; 12:675-688. [PMID: 33538574 DOI: 10.1021/acschemneuro.0c00694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
There is ample evidence that both native functions and pathogenic aggregation of α-synuclein are intimately dependent on lipid interactions and fatty acid type; the regulatory mechanism however remains unclear. In the present work, using extensive atomistic molecular dynamics simulations and enhanced-sampling, we have focused on exploring the mechanism of fatty acid dependent regulation of monomeric α-Syn100 in a native synaptic vesicle-like membrane. Our results show that α-Syn100 spontaneously binds to the membrane through its N-terminal region (residues 1-34), where the depth of membrane insertion, the structure, and orientation of the membrane-bound α-Syn100 and its impact on membrane structure are modulated by docosahexaenoic acid (DHA). DHA is a polyunsaturated fatty acid abundantly found in the brain and known to promote the oligomerization of α-synuclein. We found that DHA exhibits marked propensity to interact with monomeric α-Syn100 and modulates the microenvironment of the protein by preferentially sorting DHA-containing phospholipids, depleting other phospholipids and cholesterol as well as increasing the proportion of anionic to neutral lipids in the immediate vicinity of the protein. Owing to the unique conformational flexibility, DHA chains form more lipid-packing defects in the membrane and efficiently coat the membrane-embedded surface of the protein, compared to the saturated and monounsaturated fatty acids. DHA thus makes the bilayer more amiable to protein adsorption and less prone to α-synuclein-induced perturbation associated with cytotoxicity. Indeed, in the absence of DHA, we observed significant thinning of the local bilayer membrane induced by α-Syn100. Though α-Syn100 is predominantly α-helical in membranes studied here, in the presence of DHA we observe formation of β-sheet/β-strands in the C-terminal region (residues 35-100) of α-Syn100, which is extended out from the membrane surface. Notably, DHA induces β structure in the NAC domain of α-Syn100 and promotes extended conformations as well as large solvent exposure of this hydrophobic domain, properties that are known to facilitate self-assembly of α-synuclein. To the best of our knowledge, this study for the first time provides the atomistic insights into DHA-induced regulatory mechanism of monomeric α-synuclein, having implications in protein structure and its physiological/pathological functions.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
- Applied Phycology and Biotechnology Division, CSIR−Central Salt & Marine Chemicals Research Institute (CSIR−CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Rajesh K. Murarka
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
22
|
Banerjee S, Hashemi M, Zagorski K, Lyubchenko YL. Cholesterol in Membranes Facilitates Aggregation of Amyloid β Protein at Physiologically Relevant Concentrations. ACS Chem Neurosci 2021; 12:506-516. [PMID: 33492944 DOI: 10.1021/acschemneuro.0c00688] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The formation of amyloid β (1-42) (Aβ42) oligomers is considered to be a critical step in the development of Alzheimer's disease (AD). However, the mechanism underlying this process at physiologically low concentrations of Aβ42 remains unclear. We have previously shown that oligomers assemble at such low Aβ42 monomer concentrations in vitro on phospholipid membranes. We hypothesized that membrane composition is the factor controlling the aggregation process. Accumulation of cholesterol in membranes is associated with AD development, suggesting that insertion of cholesterol into membranes may initiate the Aβ42 aggregation, regardless of a low monomer concentration. We used atomic force microscopy (AFM) to test the hypothesis and directly visualize the aggregation process of Aβ42 on the surface of a lipid bilayer depending on the cholesterol presence. Time-lapse AFM imaging unambiguously demonstrates that cholesterol in the lipid bilayer significantly enhances the aggregation process of Aβ42 at nanomolar monomer concentration. Quantitative analysis of the AFM data shows that both the number of Aβ42 oligomers and their sizes grow when cholesterol is present. Importantly, the aggregation process is dynamic, so the aggregates assembled on the membrane can dissociate from the bilayer surface into the bulk solution. Computational modeling demonstrated that the lipid bilayer containing cholesterol had an elevated affinity to Aβ42. Moreover, monomers adopted the aggregation-prone conformations present in amyloid fibrils. The results lead to the model for the on-surface aggregation process in which the self-assembly of Aβ oligomers is controlled by the lipid composition of cellular membranes.
Collapse
Affiliation(s)
- Siddhartha Banerjee
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Mohtadin Hashemi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Karen Zagorski
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
23
|
Kang C, Sun R. Molecular Dynamics Study of the Interaction between the N-terminal of α-Synuclein and a Lipid Bilayer Mimicking Synaptic Vesicles. J Phys Chem B 2020; 125:1036-1048. [DOI: 10.1021/acs.jpcb.0c08620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Christopher Kang
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy
Mall, Honolulu 96822-2275, Hawaii, United States
| | - Rui Sun
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy
Mall, Honolulu 96822-2275, Hawaii, United States
| |
Collapse
|
24
|
Lyubchenko YL. Amyloid B-Protein Aggregation at Physiologically Relevant Concentrations. A Critical Role of Membranes. ALZHEIMER'S RESEARCH & THERAPY OPEN ACCESS 2020; 3:114. [PMID: 35425949 PMCID: PMC9007279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND The aggregation of amyloid beta (Aβ) is a self-assembly process that results in the production of fibrillar structures along with neurotoxic aggregates. However, in the vast majority studies in vitro the required Ab concentrations is several orders higher of the physiological relevant concentrations of Aβ; no aggregation is observed at physiological low nanomolar range of Aβ. This suggests that the assembly of Aβ in aggregates in vivo utilizes pathways different from those used in experiments in vitro. RESULTS The spontaneous assembly of Aβ oligomers within the physiologically relevant concentration range can occur, but it is the on-surface aggregation mechanism, in which the surface pays a role of the catalyst of the aggregation process. The model for the on-surface aggregation process suggests that the self-assembly of Aβ oligomers is initiated by the interaction of amyloid proteins with the cellular membrane. The membrane catalyzes amyloid aggregation by stabilizing an aggregation-prone conformation of amyloids. The lipid composition contributes to the membrane-mediated misfolding and aggregation of Aβ monomers. CONCLUSION Membrane-mediated aggregation catalysis explains a number of observations associated with the development of AD. The affinity of Aβ monomers to the membrane surface is the major factor defining the aggregation process rather than Aβ concentration. According to the model, the development of potential preventions for the interaction of monomeric amyloids with membrane can help control the aggregation process. This is a paradigm change for the development of efficient treatments, early diagnostics, and preventions for Alzheimer's disease.
Collapse
Affiliation(s)
- YL Lyubchenko
- Corresponding author: Yuri L Lyubchenko, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, USA, 986025 Nebraska Medical Center, Omaha, NE 68198, USA, Tel: 1-402-559-1971;
| |
Collapse
|
25
|
Gracia P, Camino JD, Volpicelli-Daley L, Cremades N. Multiplicity of α-Synuclein Aggregated Species and Their Possible Roles in Disease. Int J Mol Sci 2020; 21:E8043. [PMID: 33126694 PMCID: PMC7663424 DOI: 10.3390/ijms21218043] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein amyloid aggregation is a defining molecular feature of Parkinson's disease, Lewy body dementia, and multiple system atrophy, but can also be found in other neurodegenerative disorders such as Alzheimer's disease. The process of α-synuclein aggregation can be initiated through alternative nucleation mechanisms and dominated by different secondary processes giving rise to multiple amyloid polymorphs and intermediate species. Some aggregated species have more inherent abilities to induce cellular stress and toxicity, while others seem to be more potent in propagating neurodegeneration. The preference for particular types of polymorphs depends on the solution conditions and the cellular microenvironment that the protein encounters, which is likely related to the distinct cellular locations of α-synuclein inclusions in different synucleinopathies, and the existence of disease-specific amyloid polymorphs. In this review, we discuss our current understanding on the nature and structure of the various types of α-synuclein aggregated species and their possible roles in pathology. Precisely defining these distinct α-synuclein species will contribute to understanding the molecular origins of these disorders, developing accurate diagnoses, and designing effective therapeutic interventions for these highly debilitating neurodegenerative diseases.
Collapse
Affiliation(s)
- Pablo Gracia
- Joint Unit BIFI-IQFR (CSIC), Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain; (P.G.); (J.D.C.)
| | - José D. Camino
- Joint Unit BIFI-IQFR (CSIC), Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain; (P.G.); (J.D.C.)
| | - Laura Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Nunilo Cremades
- Joint Unit BIFI-IQFR (CSIC), Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain; (P.G.); (J.D.C.)
| |
Collapse
|
26
|
Landeck N, Strathearn KE, Ysselstein D, Buck K, Dutta S, Banerjee S, Lv Z, Hulleman JD, Hindupur J, Lin LK, Padalkar S, Stanciu LA, Lyubchenko YL, Kirik D, Rochet JC. Two C-terminal sequence variations determine differential neurotoxicity between human and mouse α-synuclein. Mol Neurodegener 2020; 15:49. [PMID: 32900375 PMCID: PMC7487555 DOI: 10.1186/s13024-020-00380-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND α-Synuclein (aSyn) aggregation is thought to play a central role in neurodegenerative disorders termed synucleinopathies, including Parkinson's disease (PD). Mouse aSyn contains a threonine residue at position 53 that mimics the human familial PD substitution A53T, yet in contrast to A53T patients, mice show no evidence of aSyn neuropathology even after aging. Here, we studied the neurotoxicity of human A53T, mouse aSyn, and various human-mouse chimeras in cellular and in vivo models, as well as their biochemical properties relevant to aSyn pathobiology. METHODS Primary midbrain cultures transduced with aSyn-encoding adenoviruses were analyzed immunocytochemically to determine relative dopaminergic neuron viability. Brain sections prepared from rats injected intranigrally with aSyn-encoding adeno-associated viruses were analyzed immunohistochemically to determine nigral dopaminergic neuron viability and striatal dopaminergic terminal density. Recombinant aSyn variants were characterized in terms of fibrillization rates by measuring thioflavin T fluorescence, fibril morphologies via electron microscopy and atomic force microscopy, and protein-lipid interactions by monitoring membrane-induced aSyn aggregation and aSyn-mediated vesicle disruption. Statistical tests consisted of ANOVA followed by Tukey's multiple comparisons post hoc test and the Kruskal-Wallis test followed by a Dunn's multiple comparisons test or a two-tailed Mann-Whitney test. RESULTS Mouse aSyn was less neurotoxic than human aSyn A53T in cell culture and in rat midbrain, and data obtained for the chimeric variants indicated that the human-to-mouse substitutions D121G and N122S were at least partially responsible for this decrease in neurotoxicity. Human aSyn A53T and a chimeric variant with the human residues D and N at positions 121 and 122 (respectively) showed a greater propensity to undergo membrane-induced aggregation and to elicit vesicle disruption. Differences in neurotoxicity among the human, mouse, and chimeric aSyn variants correlated weakly with differences in fibrillization rate or fibril morphology. CONCLUSIONS Mouse aSyn is less neurotoxic than the human A53T variant as a result of inhibitory effects of two C-terminal amino acid substitutions on membrane-induced aSyn aggregation and aSyn-mediated vesicle permeabilization. Our findings highlight the importance of membrane-induced self-assembly in aSyn neurotoxicity and suggest that inhibiting this process by targeting the C-terminal domain could slow neurodegeneration in PD and other synucleinopathy disorders.
Collapse
Affiliation(s)
- Natalie Landeck
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Katherine E. Strathearn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Present address: Fujifilm Irvine Scientific, Santa Ana, CA USA
| | - Daniel Ysselstein
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Present address: Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Kerstin Buck
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Present address: AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | - Sayan Dutta
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| | - Siddhartha Banerjee
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE USA
| | - Zhengjian Lv
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE USA
- Present address: Bruker Nanosurfaces Division, Goleta, Santa Barbara, CA USA
| | - John D. Hulleman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Present address: Departments of Ophthalmology and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Jagadish Hindupur
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Present address: Liveon Biolabs Pvt. Ltd., Tumakuru, Karnataka India
| | - Li-Kai Lin
- School of Materials Engineering, Purdue University, West Lafayette, IN USA
| | - Sonal Padalkar
- School of Materials Engineering, Purdue University, West Lafayette, IN USA
- Present address: Department of Mechanical Engineering, Iowa State University, Ames, IA USA
| | - Lia A. Stanciu
- School of Materials Engineering, Purdue University, West Lafayette, IN USA
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE USA
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| |
Collapse
|
27
|
Soll LG, Eisen JN, Vargas KJ, Medeiros AT, Hammar KM, Morgan JR. α-Synuclein-112 Impairs Synaptic Vesicle Recycling Consistent With Its Enhanced Membrane Binding Properties. Front Cell Dev Biol 2020; 8:405. [PMID: 32548120 PMCID: PMC7272675 DOI: 10.3389/fcell.2020.00405] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/04/2020] [Indexed: 01/06/2023] Open
Abstract
Synucleinopathies are neurological disorders associated with α-synuclein overexpression and aggregation. While it is well-established that overexpression of wild type α-synuclein (α-syn-140) leads to cellular toxicity and neurodegeneration, much less is known about other naturally occurring α-synuclein splice isoforms. In this study we provide the first detailed examination of the synaptic effects caused by one of these splice isoforms, α-synuclein-112 (α-syn-112). α-Syn-112 is produced by an in-frame excision of exon 5, resulting in deletion of amino acids 103-130 in the C-terminal region. α-Syn-112 is upregulated in the substantia nigra, frontal cortex, and cerebellum of parkinsonian brains and higher expression levels are correlated with susceptibility to Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple systems atrophy (MSA). We report here that α-syn-112 binds strongly to anionic phospholipids when presented in highly curved liposomes, similar to α-syn-140. However, α-syn-112 bound significantly stronger to all phospholipids tested, including the phosphoinositides. α-Syn-112 also dimerized and trimerized on isolated synaptic membranes, while α-syn-140 remained largely monomeric. When introduced acutely to lamprey synapses, α-syn-112 robustly inhibited synaptic vesicle recycling. Interestingly, α-syn-112 produced effects on the plasma membrane and clathrin-mediated synaptic vesicle endocytosis that were phenotypically intermediate between those caused by monomeric and dimeric α-syn-140. These findings indicate that α-syn-112 exhibits enhanced phospholipid binding and oligomerization in vitro and consequently interferes with synaptic vesicle recycling in vivo in ways that are consistent with its biochemical properties. This study provides additional evidence suggesting that impaired vesicle endocytosis is a cellular target of excess α-synuclein and advances our understanding of potential mechanisms underlying disease pathogenesis in the synucleinopathies.
Collapse
Affiliation(s)
- Lindsey G Soll
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Julia N Eisen
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Karina J Vargas
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Audrey T Medeiros
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Katherine M Hammar
- Central Microscopy Facility, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Jennifer R Morgan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| |
Collapse
|
28
|
Hennen J, Kohler J, Karuka SR, Saunders CA, Luxton GWG, Mueller JD. Differentiating Luminal and Membrane-Associated Nuclear Envelope Proteins. Biophys J 2020; 118:2385-2399. [PMID: 32304637 DOI: 10.1016/j.bpj.2020.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/09/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022] Open
Abstract
The nuclear envelope (NE) consists of two concentric nuclear membranes separated by the lumen, an ∼40-nm-wide fluid layer. NE proteins are implicated in important cellular processes ranging from gene expression to nuclear positioning. Although recent progress has been achieved in quantifying the assembly states of NE proteins in their native environment with fluorescence fluctuation spectroscopy, these studies raised questions regarding the association of NE proteins with nuclear membranes during the assembly process. Monitoring the interaction of proteins with membranes is important because the binding event is often associated with conformational changes that are critical to cellular signaling pathways. Unfortunately, the close physical proximity of both membranes poses a severe experimental challenge in distinguishing luminal and membrane-associated NE proteins. This study seeks to address this problem by introducing new, to our knowledge, fluorescence-based assays that overcome the restrictions imposed by the NE environment. We found that luminal proteins violate the Stokes-Einstein relation, which eliminates a straightforward use of protein mobility as a marker of membrane association within the NE. However, a surprising anomaly in the temperature-dependent mobility of luminal proteins was observed, which was developed into an assay for distinguishing between soluble and membrane-bound NE proteins. We further introduced a second independent tool for distinguishing both protein populations by harnessing the previously reported undulations of the nuclear membranes. These membrane undulations introduce local volume changes that produce an additional fluorescence fluctuation signal for luminal, but not for membrane-bound, proteins. After testing both methods using simple model systems, we apply the two assays to investigate a previously proposed model of membrane association for the luminal domain of SUN2, a constituent protein of the linker of nucleoskeleton and cytoskeleton complex. Finally, we investigate the effect of C- and N-terminal tagging of the luminal ATPase torsinA on its ability to associate with nuclear membranes.
Collapse
Affiliation(s)
- Jared Hennen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - John Kohler
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | | | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota; Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
29
|
Initiation and propagation of α-synuclein aggregation in the nervous system. Mol Neurodegener 2020; 15:19. [PMID: 32143659 PMCID: PMC7060612 DOI: 10.1186/s13024-020-00368-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
The two main pathological hallmarks of Parkinson’s disease are loss of dopamine neurons in the substantia nigra pars compacta and proteinaceous amyloid fibrils composed mostly of α-synuclein, called Lewy pathology. Levodopa to enhance dopaminergic transmission remains one of the most effective treatment for alleviating the motor symptoms of Parkinson’s disease (Olanow, Mov Disord 34:812–815, 2019). In addition, deep brain stimulation (Bronstein et al., Arch Neurol 68:165, 2011) to modulate basal ganglia circuit activity successfully alleviates some motor symptoms. MRI guided focused ultrasound in the subthalamic nucleus is a promising therapeutic strategy as well (Martinez-Fernandez et al., Lancet Neurol 17:54–63, 2018). However, to date, there exists no treatment that stops the progression of this disease. The findings that α-synuclein can be released from neurons and inherited through interconnected neural networks opened the door for discovering novel treatment strategies to prevent the formation and spread of Lewy pathology with the goal of halting PD in its tracks. This hypothesis is based on discoveries that pathologic aggregates of α-synuclein induce the endogenous α-synuclein protein to adopt a similar pathologic conformation, and is thus self-propagating. Phase I clinical trials are currently ongoing to test treatments such as immunotherapy to prevent the neuron to neuron spread of extracellular aggregates. Although tremendous progress has been made in understanding how Lewy pathology forms and spreads throughout the brain, cell intrinsic factors also play a critical role in the formation of pathologic α-synuclein, such as mechanisms that increase endogenous α-synuclein levels, selective expression profiles in distinct neuron subtypes, mutations and altered function of proteins involved in α-synuclein synthesis and degradation, and oxidative stress. Strategies that prevent the formation of pathologic α-synuclein should consider extracellular release and propagation, as well as neuron intrinsic mechanisms.
Collapse
|
30
|
Banerjee S, Hashemi M, Zagorski K, Lyubchenko YL. Interaction of Aβ42 with Membranes Triggers the Self-Assembly into Oligomers. Int J Mol Sci 2020; 21:ijms21031129. [PMID: 32046252 PMCID: PMC7036922 DOI: 10.3390/ijms21031129] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 11/16/2022] Open
Abstract
The self-assembly of amyloid β (Aβ) proteins into oligomers is the major pathogenic event leading to Alzheimer’s disease (AD). Typical in vitro experiments require high protein concentrations, whereas the physiological concentration of Aβ is in the picomolar to low nanomolar range. This complicates the translation of results obtained in vitro to understanding the aggregation process in vivo. Here, we demonstrate that Aβ42 self-assembles into aggregates on membrane bilayers at low nanomolar concentrations - a pathway in which the membrane plays the role of a catalyst. Additionally, physiological ionic conditions (150 mM NaCl) significantly enhance on-membrane aggregation, leading to the rapid formation of oligomers. The self-assembly process is reversible, so assembled aggregates can dissociate from the membrane surface into the bulk solution to further participate in the aggregation process. Molecular dynamics simulations demonstrate that the transient membrane-Aβ interaction dramatically changes the protein conformation, facilitating the assembly of dimers. The results indicate peptide–membrane interaction is the critical step towards oligomer formation at physiologically low protein concentrations.
Collapse
|
31
|
Pan Y, Banerjee S, Zagorski K, Shlyakhtenko LS, Kolomeisky AB, Lyubchenko YL. Molecular Model for the Surface-Catalyzed Protein Self-Assembly. J Phys Chem B 2020; 124:366-372. [PMID: 31867969 DOI: 10.1021/acs.jpcb.9b10052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The importance of cell surfaces in the self-assembly of proteins is widely accepted. One biologically significant event is the assembly of amyloidogenic proteins into aggregates, which leads to neurodegenerative disorders like Alzheimer's and Parkinson's diseases. The interaction of amyloidogenic proteins with cellular membranes appears to dramatically facilitate the aggregation process. Recent findings indicate that, in the presence of surfaces, aggregation occurs at physiologically low concentrations, suggesting that interaction with surfaces plays a critical role in the disease-prone aggregation process. However, the molecular mechanisms behind the on-surface aggregation process remain unclear. Here, we provide a theoretical model that offers a molecular explanation. According to this model, monomers transiently immobilized to surfaces increase the local monomer protein concentration and thus work as nuclei to dramatically accelerate the entire aggregation process. This physical-chemical theory was verified by experimental studies, using mica surfaces, to examine the aggregation kinetics of amyloidogenic α-synuclein protein and non-amyloidogenic cytosine deaminase APOBEC3G.
Collapse
Affiliation(s)
- Yangang Pan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha , Nebraska 68198-6025 , United States
| | - Siddhartha Banerjee
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha , Nebraska 68198-6025 , United States
| | - Karen Zagorski
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha , Nebraska 68198-6025 , United States
| | - Luda S Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha , Nebraska 68198-6025 , United States
| | - Anatoly B Kolomeisky
- Department of Chemistry-MS 60 , Rice University , 6100 Main Street , Houston , Texas 77005-1892 , Unites States
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha , Nebraska 68198-6025 , United States
| |
Collapse
|