1
|
Anderson SR, Gopal MR, Spangler AP, Jones MA, Wyllis DR, Kunjapur AM. A One-Pot Biocatalytic Cascade to Access Diverse L-Phenylalanine Derivatives from Aldehydes or Carboxylic Acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627276. [PMID: 39677605 PMCID: PMC11643118 DOI: 10.1101/2024.12.06.627276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Non-standard amino acids (nsAAs) that are L-phenylalanine derivatives with aryl ring functionalization have long been harnessed in natural product synthesis, therapeutic peptide synthesis, and diverse applications of genetic code expansion. Yet, to date these chiral molecules have often been the products of poorly enantioselective and environmentally harsh organic synthesis routes. Here, we reveal the broad specificity of multiple natural pyridoxal 5'-phosphate (PLP)-dependent enzymes, specifically an L-threonine transaldolase, a phenylserine dehydratase, and an aminotransferase, towards substrates that contain aryl side chains with diverse substitutions. We exploit this tolerance to construct a one-pot biocatalytic cascade that achieves high-yield synthesis of 18 diverse L-phenylalanine derivatives from aldehydes under mild aqueous reaction conditions. We demonstrate addition of a carboxylic acid reductase module to this cascade to enable the biosynthesis of L-phenylalanine derivatives from carboxylic acids that may be less expensive or less reactive than the corresponding aldehydes. Finally, we investigate the scalability of the cascade by developing a lysate-based route for preparative-scale synthesis of 4-formyl-L-phenylalanine, a nsAA with a bio-orthogonal handle that is not readily market-accessible. Overall, this work offers an efficient, versatile, and scalable route with the potential to lower manufacturing cost and democratize synthesis for many valuable nsAAs.
Collapse
|
2
|
Bearne SL, Hayden JA. Application of circular dichroism-based assays to racemases and epimerases: Recognition and catalysis of reactions of chiral substrates by mandelate racemase. Methods Enzymol 2023; 685:127-169. [PMID: 37245900 DOI: 10.1016/bs.mie.2023.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Racemases and epimerases have attracted much interest because of their astonishing ability to catalyze the rapid α-deprotonation of carbon acid substrates with high pKa values (∼13-30) leading to the formation of d-amino acids or various carbohydrate diastereomers that serve important roles in both normal physiology and pathology. Enzymatic assays to measure the initial rates of reactions catalyzed by these enzymes are discussed using mandelate racemase (MR) as an example. For MR, a convenient, rapid, and versatile circular dichroism (CD)-based assay has been used to determine the kinetic parameters accompanying the MR-catalyzed racemization of mandelate and alternative substrates. This direct, continuous assay permits real time monitoring of reaction progress, the rapid determination of initial velocities, and immediate recognition of anomalous behaviors. MR recognizes chiral substrates primarily through interactions of the phenyl ring of (R)- or (S)-mandelate with the hydrophobic R- or S-pocket at the active site, respectively. During catalysis, the carboxylate and α-hydroxyl groups of the substrate remain fixed in place through interactions with the Mg2+ ion and multiple H-bonding interactions, while the phenyl ring moves between the R- and S-pockets. The minimal requirements for the substrate appear to be the presence of a glycolate or glycolamide moiety, and a hydrophobic group of limited size that can stabilize the carbanionic intermediate through resonance or strong inductive effects. Similar CD-based assays may be applied to determine the activity of other racemases or epimerases with proper consideration of the molar ellipticity, wavelength, overall absorbance of the sample, and the light pathlength.
Collapse
Affiliation(s)
- Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Department of Chemistry, Dalhousie University, Halifax, NS, Canada.
| | - Joshua A Hayden
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Gavira JA, Cámara-Artigas A, Neira JL, Torres de Pinedo JM, Sánchez P, Ortega E, Martinez-Rodríguez S. Structural insights into choline-O-sulfatase reveal the molecular determinants for ligand binding. Acta Crystallogr D Struct Biol 2022; 78:669-682. [PMID: 35503214 PMCID: PMC9063841 DOI: 10.1107/s2059798322003709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Choline-O-sulfatase (COSe; EC 3.1.6.6) is a member of the alkaline phosphatase (AP) superfamily, and its natural function is to hydrolyze choline-O-sulfate into choline and sulfate. Despite its natural function, the major interest in this enzyme resides in the landmark catalytic/substrate promiscuity of sulfatases, which has led to attention in the biotechnological field due to their potential in protein engineering. In this work, an in-depth structural analysis of wild-type Sinorhizobium (Ensifer) meliloti COSe (SmeCOSe) and its C54S active-site mutant is reported. The binding mode of this AP superfamily member to both products of the reaction (sulfate and choline) and to a substrate-like compound are shown for the first time. The structures further confirm the importance of the C-terminal extension of the enzyme in becoming part of the active site and participating in enzyme activity through dynamic intra-subunit and inter-subunit hydrogen bonds (Asn146A-Asp500B-Asn498B). These residues act as the `gatekeeper' responsible for the open/closed conformations of the enzyme, in addition to assisting in ligand binding through the rearrangement of Leu499 (with a movement of approximately 5 Å). Trp129 and His145 clamp the quaternary ammonium moiety of choline and also connect the catalytic cleft to the C-terminus of an adjacent protomer. The structural information reported here contrasts with the proposed role of conformational dynamics in promoting the enzymatic catalytic proficiency of an enzyme.
Collapse
Affiliation(s)
- Jose Antonio Gavira
- Laboratorio de Estudios Cristalográficos, CSIC, Armilla, 18100 Granada, Spain
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence (ceiA3), Research Centre for Agricultural and Food Biotechnology (BITAL), Carretera de Sacramento s/n, Almería, 04120, Spain
| | - Jose Luis Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR–CSIC–BIFI and GBsC–CSIC–BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jesús M. Torres de Pinedo
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, 18071 Granada, Spain
| | - Pilar Sánchez
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, 18071 Granada, Spain
| | - Esperanza Ortega
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, 18071 Granada, Spain
| | - Sergio Martinez-Rodríguez
- Laboratorio de Estudios Cristalográficos, CSIC, Armilla, 18100 Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
4
|
A shared mechanistic pathway for pyridoxal phosphate-dependent arginine oxidases. Proc Natl Acad Sci U S A 2021; 118:2012591118. [PMID: 34580201 DOI: 10.1073/pnas.2012591118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/02/2023] Open
Abstract
The mechanism by which molecular oxygen is activated by the organic cofactor pyridoxal phosphate (PLP) for oxidation reactions remains poorly understood. Recent work has identified arginine oxidases that catalyze desaturation or hydroxylation reactions. Here, we investigate a desaturase from the Pseudoalteromonas luteoviolacea indolmycin pathway. Our work, combining X-ray crystallographic, biochemical, spectroscopic, and computational studies, supports a shared mechanism with arginine hydroxylases, involving two rounds of single-electron transfer to oxygen and superoxide rebound at the 4' carbon of the PLP cofactor. The precise positioning of a water molecule in the active site is proposed to control the final reaction outcome. This proposed mechanism provides a unified framework to understand how oxygen can be activated by PLP-dependent enzymes for oxidation of arginine and elucidates a shared mechanistic pathway and intertwined evolutionary history for arginine desaturases and hydroxylases.
Collapse
|
5
|
De Cesare S, McKenna CA, Mulholland N, Murray L, Bella J, Campopiano DJ. Direct monitoring of biocatalytic deacetylation of amino acid substrates by 1H NMR reveals fine details of substrate specificity. Org Biomol Chem 2021; 19:4904-4909. [PMID: 33998641 DOI: 10.1039/d1ob00122a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amino acids are key synthetic building blocks that can be prepared in an enantiopure form by biocatalytic methods. We show that the l-selective ornithine deacetylase ArgE catalyses hydrolysis of a wide-range of N-acyl-amino acid substrates. This activity was revealed by 1H NMR spectroscopy that monitored the appearance of the well resolved signal of the acetate product. Furthermore, the assay was used to probe the subtle structural selectivity of the biocatalyst using a substrate that could adopt different rotameric conformations.
Collapse
Affiliation(s)
- Silvia De Cesare
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Catherine A McKenna
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | | | - Lorna Murray
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Juraj Bella
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Dominic J Campopiano
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
6
|
Lloyd MD, Yevglevskis M, Nathubhai A, James TD, Threadgill MD, Woodman TJ. Racemases and epimerases operating through a 1,1-proton transfer mechanism: reactivity, mechanism and inhibition. Chem Soc Rev 2021; 50:5952-5984. [PMID: 34027955 PMCID: PMC8142540 DOI: 10.1039/d0cs00540a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Racemases and epimerases catalyse changes in the stereochemical configurations of chiral centres and are of interest as model enzymes and as biotechnological tools. They also occupy pivotal positions within metabolic pathways and, hence, many of them are important drug targets. This review summarises the catalytic mechanisms of PLP-dependent, enolase family and cofactor-independent racemases and epimerases operating by a deprotonation/reprotonation (1,1-proton transfer) mechanism and methods for measuring their catalytic activity. Strategies for inhibiting these enzymes are reviewed, as are specific examples of inhibitors. Rational design of inhibitors based on substrates has been extensively explored but there is considerable scope for development of transition-state mimics and covalent inhibitors and for the identification of inhibitors by high-throughput, fragment and virtual screening approaches. The increasing availability of enzyme structures obtained using X-ray crystallography will facilitate development of inhibitors by rational design and fragment screening, whilst protein models will facilitate development of transition-state mimics.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Maksims Yevglevskis
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and CatSci Ltd., CBTC2, Capital Business Park, Wentloog, Cardiff CF3 2PX, UK
| | - Amit Nathubhai
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and University of Sunderland, School of Pharmacy & Pharmaceutical Sciences, Sciences Complex, Sunderland SR1 3SD, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Michael D Threadgill
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth SY23 3BY, UK
| | - Timothy J Woodman
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
7
|
De Cesare S, Campopiano DJ. The N-Acetyl Amino Acid Racemases (NAAARs); Native and evolved biocatalysts applied to the synthesis of canonical and non-canonical amino acids. Curr Opin Biotechnol 2021; 69:212-220. [PMID: 33556834 DOI: 10.1016/j.copbio.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/15/2020] [Accepted: 01/10/2021] [Indexed: 02/08/2023]
Abstract
Amino acids are one of the most important synthons employed in the biotechnology, pharmaceutical and agrochemical industries for the preparation of active agents. Recently, the emerging use of these compounds as tools for protein engineering, has also been reported. Numerous chemo- and biocatalytic strategies have been developed for the stereoselective synthesis of these compounds. One of the most efficient processes is the enzymatic dynamic kinetic resolution of N-acylated derivatives, where an N-acyl amino acid racemase (NAAAR) is coupled with an enantioselective, hydrolytic enzyme (aminoacylase), and used to convert a racemic mixture of starting materials to enantiopure products. Here we provide a brief overview of the structure and mechanism of NAAAR. We will also review the applications of this class of biocatalyst, as well as discussing the various strategies employed to obtain an efficient system for the synthesis of optically pure canonical and non-canonical amino acids.
Collapse
Affiliation(s)
- Silvia De Cesare
- EaStChem School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Dominic J Campopiano
- EaStChem School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
8
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|