1
|
Hoenger Ramazanova RD, Roumeliotis TI, Wright JC, Choudhary JS. PhoXplex: Combining Phospho-enrichable Cross-Linking with Isobaric Labeling for Quantitative Proteome-Wide Mapping of Protein Interfaces. J Proteome Res 2024; 23:5209-5220. [PMID: 39422127 PMCID: PMC11537259 DOI: 10.1021/acs.jproteome.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/07/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Integrating cross-linking mass spectrometry (XL-MS) into structural biology workflows provides valuable information about the spatial arrangement of amino acid stretches, which can guide elucidation of protein assembly architecture. Additionally, the combination of XL-MS with peptide quantitation techniques is a powerful approach to delineate protein interface dynamics across diverse conditions. While XL-MS is increasingly effective with isolated proteins or small complexes, its application to whole-cell samples poses technical challenges related to analysis depth and throughput. The use of enrichable cross-linkers has greatly improved the detectability of protein interfaces in a proteome-wide scale, facilitating global protein-protein interaction mapping. Therefore, bringing together enrichable cross-linking and multiplexed peptide quantification is an appealing approach to enable comparative characterization of structural attributes of proteins and protein interactions. Here, we combined phospho-enrichable cross-linking with TMT labeling to develop a streamline workflow (PhoXplex) for the detection of differential structural features across a panel of cell lines in a global scale. We achieved deep coverage with quantification of over 9000 cross-links and long loop-links in total including potentially novel interactions. Overlaying AlphaFold predictions and disorder protein annotations enables exploration of the quantitative cross-linking data set, to reveal possible associations between mutations and protein structures. Lastly, we discuss current shortcomings and perspectives for deep whole-cell profiling of protein interfaces at large-scale.
Collapse
Affiliation(s)
- Runa D. Hoenger Ramazanova
- Functional
Proteomics team, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Theodoros I. Roumeliotis
- Functional
Proteomics team, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - James C. Wright
- Functional
Proteomics team, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Jyoti S. Choudhary
- Functional
Proteomics team, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| |
Collapse
|
2
|
Iacono D, Hatch K, Murphy EK, Cole RN, Post J, Leonessa F, Perl DP. Proteomic Changes in the Hippocampus after Repeated Explosive-Driven Blasts. J Proteome Res 2024; 23:397-408. [PMID: 38096401 PMCID: PMC10775857 DOI: 10.1021/acs.jproteome.3c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 01/06/2024]
Abstract
Repeated blast-traumatic brain injury (blast-TBI) has been hypothesized to cause persistent and unusual neurological and psychiatric symptoms in service members returning from war zones. Blast-wave primary effects have been supposed to induce damage and molecular alterations in the brain. However, the mechanisms through which the primary effect of an explosive-driven blast wave generate brain lesions and induce brain consequences are incompletely known. Prior findings from rat brains exposed to two consecutive explosive-driven blasts showed molecular changes (hyperphosphorylated-Tau, AQP4, S100β, PDGF, and DNA-polymerase-β) that varied in magnitude and direction across different brain regions. We aimed to compare, in an unbiased manner, the proteomic profile in the hippocampus of double blast vs sham rats using mass spectrometry (MS). Data showed differences in up- and down-regulation for protein abundances in the hippocampus of double blast vs sham rats. Tandem mass tag (TMT)-MS results showed 136 up-regulated and 94 down-regulated proteins between the two groups (10.25345/C52B8VP0X). These TMT-MS findings revealed changes never described before in blast studies, such as increases in MAGI3, a scaffolding protein at cell-cell junctions, which were confirmed by Western blotting analyses. Due to the absence of behavioral and obvious histopathological changes as described in our previous publications, these proteomic data further support the existence of an asymptomatic blast-induced molecular altered status (ABIMAS) associated with specific protein changes in the hippocampus of rats repeatedly expsosed to blast waves generated by explosive-driven detonations.
Collapse
Affiliation(s)
- Diego Iacono
- DoD/USU
Brain Tissue Repository & Neuropathology Program, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
- Department
of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
- Department
of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
- Neuroscience
Program, Department of Anatomy, Physiology & Genetics, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
- The
Henry M. Jackson Foundation for the Advancement of Military Medicine
(HJF), Inc., Bethesda, Maryland 20817, United States
- Neurodegeneration
Disorders Clinic, National Institute of
Neurological Disorders and Stroke, NINDS, NIH, Bethesda, Maryland 20814, United States
| | - Kathleen Hatch
- Department
of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
| | - Erin K. Murphy
- Department
of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
| | - Robert N. Cole
- Mass
Spectrometry and Proteomics, Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, United States
| | - Jeremy Post
- Mass
Spectrometry and Proteomics, Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, United States
| | - Fabio Leonessa
- Department
of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
| | - Daniel P. Perl
- DoD/USU
Brain Tissue Repository & Neuropathology Program, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
- Department
of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland 20814, United States
| |
Collapse
|
3
|
Hoopmann MR, Shteynberg DD, Zelter A, Riffle M, Lyon AS, Agard DA, Luan Q, Nolen BJ, MacCoss MJ, Davis TN, Moritz RL. Improved Analysis of Cross-Linking Mass Spectrometry Data with Kojak 2.0, Advanced by Integration into the Trans-Proteomic Pipeline. J Proteome Res 2023; 22:647-655. [PMID: 36629399 PMCID: PMC10234491 DOI: 10.1021/acs.jproteome.2c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fragmentation ion spectral analysis of chemically cross-linked proteins is an established technology in the proteomics research repertoire for determining protein interactions, spatial orientation, and structure. Here we present Kojak version 2.0, a major update to the original Kojak algorithm, which was developed to identify cross-linked peptides from fragment ion spectra using a database search approach. A substantially improved algorithm with updated scoring metrics, support for cleavable cross-linkers, and identification of cross-links between 15N-labeled homomultimers are among the newest features of Kojak 2.0 presented here. Kojak 2.0 is now integrated into the Trans-Proteomic Pipeline, enabling access to dozens of additional tools within that suite. In particular, the PeptideProphet and iProphet tools for validation of cross-links improve the sensitivity and accuracy of correct cross-link identifications at user-defined thresholds. These new features improve the versatility of the algorithm, enabling its use in a wider range of experimental designs and analysis pipelines. Kojak 2.0 remains open-source and multiplatform.
Collapse
Affiliation(s)
| | | | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, WA, USA 98195
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA, USA 98195
| | - Andrew S. Lyon
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA 94143
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA 94143
| | - Qing Luan
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA 97403
| | - Brad J. Nolen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA 97403
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA 98195
| | - Trisha N. Davis
- Department of Biochemistry, University of Washington, Seattle, WA, USA 98195
| | | |
Collapse
|
4
|
Piersimoni L, Kastritis PL, Arlt C, Sinz A. Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein-Protein Interactions─A Method for All Seasons. Chem Rev 2021; 122:7500-7531. [PMID: 34797068 DOI: 10.1021/acs.chemrev.1c00786] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mass spectrometry (MS) has become one of the key technologies of structural biology. In this review, the contributions of chemical cross-linking combined with mass spectrometry (XL-MS) for studying three-dimensional structures of proteins and for investigating protein-protein interactions are outlined. We summarize the most important cross-linking reagents, software tools, and XL-MS workflows and highlight prominent examples for characterizing proteins, their assemblies, and interaction networks in vitro and in vivo. Computational modeling plays a crucial role in deriving 3D-structural information from XL-MS data. Integrating XL-MS with other techniques of structural biology, such as cryo-electron microscopy, has been successful in addressing biological questions that to date could not be answered. XL-MS is therefore expected to play an increasingly important role in structural biology in the future.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Kurt-Mothes-Strasse 3a, D-06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Biozentrum, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| |
Collapse
|