1
|
Wang Y, Chen H, Li Z, Gao M, Yu Q, Chen X, Situ C, Qi Y, Li Y, Guo Y, Zhu H, Guo X. Single-Cell Proteomics Using the One-Step Droplet-in-Oil Digestion Method Reveals Proteins Important for Male Meiotic Progression. Anal Chem 2025. [PMID: 40367333 DOI: 10.1021/acs.analchem.4c06467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Different from DNA or RNA, proteins cannot be amplified. The performance of single-cell proteomics is limited by sample loss during sample preparation. Here, we present a one-step droplet-in-oil digestion (OSDO) method that involves one-step water-in-oil processing using cyclohexane or n-heptane, which can reduce the sample adsorption loss and sample volume change due to evaporation and increase the sensitivity and stability of single-cell proteomics. The OSDO is demonstrated to be compatible with tandem mass tag (TMT) labeling to improve the throughput. The OSDO, followed by data-independent acquisition (DIA), quantified more than 3700 proteins per cell during meiotic progression from pachytene to metaphase I, with no correlation between protein and mRNA levels. Inhibition of VPS34 and DNMT1, two proteins up-regulated in metaphase I, both affected metaphase I formation. The OSDO is an easy-to-operate method compatible with both subsequent labeled and unlabeled quantification to expand the depth, throughput, and applicability in single-cell proteomics.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Hao Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Zongze Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Mengmeng Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Qingyun Yu
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211100, China
| | - Xu Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Yan Li
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211100, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
2
|
Ryu T, Kim K, Asiimwe N, Na CH. Proteomic Insight Into Alzheimer's Disease Pathogenesis Pathways. Proteomics 2025:e202400298. [PMID: 39791267 DOI: 10.1002/pmic.202400298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, but the pathogenesis mechanism is still elusive. Advances in proteomics have uncovered key molecular mechanisms underlying AD, revealing a complex network of dysregulated pathways, including amyloid metabolism, tau pathology, apolipoprotein E (APOE), protein degradation, neuroinflammation, RNA splicing, metabolic dysregulation, and cognitive resilience. This review examines recent proteomic findings from AD brain tissues and biological fluids, highlighting potential biomarkers and therapeutic targets. By examining the proteomic landscape of them, we aim to deepen our understanding of the disease and support developing precision medicine strategies for more effective interventions.
Collapse
Affiliation(s)
- Taekyung Ryu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyungdo Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Asiimwe
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Lin HJL, Webber KGI, Nwosu AJ, Kelly RT. Review and Practical Guide for Getting Started With Single-Cell Proteomics. Proteomics 2025; 25:e202400021. [PMID: 39548896 PMCID: PMC11994847 DOI: 10.1002/pmic.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 11/18/2024]
Abstract
Single-cell proteomics (SCP) has advanced significantly in recent years, with new tools specifically designed for the preparation and analysis of single cells now commercially available to researchers. The field is sufficiently mature to be broadly accessible to any lab capable of isolating single cells and performing bulk-scale proteomic analyses. In this review, we highlight recent work in the SCP field that has significantly lowered the barrier to entry, thus providing a practical guide for those who are newly entering the SCP field. We outline the fundamental principles and report multiple paths to accomplish the key steps of a successful SCP experiment including sample preparation, separation, and mass spectrometry data acquisition and analysis. We recommend that researchers start with a label-free SCP workflow, as achieving high-quality and quantitatively accurate results is more straightforward than label-based multiplexed strategies. By leveraging these accessible means, researchers can confidently perform SCP experiments and make meaningful discoveries at the single-cell level.
Collapse
Affiliation(s)
- Hsien-Jung L Lin
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Kei G I Webber
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Andikan J Nwosu
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Ryan T Kelly
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
4
|
Silva R, Sobral AF, Dinis-Oliveira RJ, Barbosa DJ. The Link Between Paraquat and Demyelination: A Review of Current Evidence. Antioxidants (Basel) 2024; 13:1354. [PMID: 39594496 PMCID: PMC11590890 DOI: 10.3390/antiox13111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridilium dichloride), a widely used bipyridinium herbicide, is known for inducing oxidative stress, leading to extensive cellular toxicity, particularly in the lungs, liver, kidneys, and central nervous system (CNS), and is implicated in fatal poisonings. Due to its biochemical similarities with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), paraquat has been used as a Parkinson's disease model, although its broader neurotoxic effects suggest the participation of multiple mechanisms. Demyelinating diseases are conditions characterized by damage to the myelin sheath of neurons. They affect the CNS and peripheral nervous system (PNS), resulting in diverse clinical manifestations. In recent years, growing concerns have emerged about the impact of chronic, low-level exposure to herbicides on human health, particularly due to agricultural runoff contaminating drinking water sources and their presence in food. Studies indicate that paraquat may significantly impact myelinating cells, myelin-related gene expression, myelin structure, and cause neuroinflammation, potentially contributing to demyelination. Therefore, demyelination may represent another mechanism of neurotoxicity associated with paraquat, which requires further investigation. This manuscript reviews the potential association between paraquat and demyelination. Understanding this link is crucial for enhancing strategies to minimize exposure and preserve public health.
Collapse
Affiliation(s)
- Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Ana Filipa Sobral
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, 1400-136 Lisbon, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
5
|
Mali SB. Single cell proteomics. Potential applications in Head and Neck oncology. Oral Oncol 2023; 146:106586. [PMID: 37816290 DOI: 10.1016/j.oraloncology.2023.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023]
Abstract
In-depth transcriptomic and proteomic analyses are crucial for understanding normal and pathological biology. Next-generation sequencing technology (NGS) is used to assess gene expression, but protein abundance cannot be scaled up due to the lack of methods like PCR. This presents a major obstacle to proteomics at the single-cell level, as protein expression dictates cell state. Biochemists are interested in single-cell analysis of proteins, as analyzing tissues with diverse cell types hides cell-to-cell differences, making it difficult to interpret the resulting data. Single-cell proteomics is a promising field that provides direct yet comprehensive molecular insights into cellular functions without averaging effects. However, protein adsorption loss (PAL) has been a technical challenge, and mitigations have been generic, with efficacy evaluated by the size of the resolved proteome without specificity on individual proteins. Advances in sample processing, separations, and mass spectrometry have made it possible to quantify >1000 proteins from individual mammalian cells, a level of coverage that required thousands of cells just a few years ago.
Collapse
Affiliation(s)
- Shrikant B Mali
- Mahatma Gandhi Vidyamandir's Karmaveer Bhausaheb Hiray Dental College & Hospital, Nashik, India.
| |
Collapse
|
6
|
Hong X, Wang Y, Wang K, Wei C, Li W, Yu L, Xu H, Zhu J, Zhu X, Liu X. Single-Cell Atlas Reveals the Hemocyte Subpopulations and Stress Responses in Asian Giant Softshell Turtle during Hibernation. BIOLOGY 2023; 12:994. [PMID: 37508424 PMCID: PMC10376416 DOI: 10.3390/biology12070994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Hibernation in turtle species is an adaptive survival strategy to colder winter conditions or food restrictions. However, the mechanisms underlying seasonal adaptions remain unclear. In the present study, we collected hemocytes from Pelochelys cantorii and compared the molecular signature of these cells between the active state and hibernation period based on single-cell RNA sequencing (scRNA-seq) analysis. We found six cell types and identified a list of new marker genes for each cell subpopulation. Moreover, several heat shock genes, including the Hsp40 family chaperone gene (DNAJ) and HSP temperature-responsive genes (HSPs), were upregulated during the hibernation period, which predicted these genes may play crucial roles in the stress response during hibernation. Additionally, compared to hemocytes in the active state, several upregulated differentially expressed immune-related genes, such as stat1, traf3, and socs6, were identified in hemocytes during the hibernation period, thus indicating the important immune function of hemocytes. Therefore, our findings provide a unified classification of P. cantorii hemocytes and identify the genes related to the stress response, thereby providing a better understanding of the adaptive mechanisms of hibernation.
Collapse
Affiliation(s)
- Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yakun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Kaikuo Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Chengqing Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Lingyun Yu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Haoyang Xu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Junxian Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
7
|
Yim YY, Nestler EJ. Cell-Type-Specific Neuroproteomics of Synapses. Biomolecules 2023; 13:998. [PMID: 37371578 PMCID: PMC10296650 DOI: 10.3390/biom13060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In the last two decades, our knowledge of synaptic proteomes and their relationship to normal brain function and neuropsychiatric disorders has been expanding rapidly through the use of more powerful neuroproteomic approaches. However, mass spectrometry (MS)-based neuroproteomic studies of synapses still require cell-type, spatial, and temporal proteome information. With the advancement of sample preparation and MS techniques, we have just begun to identify and understand proteomes within a given cell type, subcellular compartment, and cell-type-specific synapse. Here, we review the progress and limitations of MS-based neuroproteomics of synapses in the mammalian CNS and highlight the recent applications of these approaches in studying neuropsychiatric disorders such as major depressive disorder and substance use disorders. Combining neuroproteomic findings with other omics studies can generate an in-depth, comprehensive map of synaptic proteomes and possibly identify new therapeutic targets and biomarkers for several central nervous system disorders.
Collapse
Affiliation(s)
- Yun Young Yim
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | | |
Collapse
|
8
|
Gazerani P. Human Brain Organoids in Migraine Research: Pathogenesis and Drug Development. Int J Mol Sci 2023; 24:3113. [PMID: 36834522 PMCID: PMC9961184 DOI: 10.3390/ijms24043113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Human organoids are small, self-organized, three-dimensional (3D) tissue cultures that have started to revolutionize medical science in terms of understanding disease, testing pharmacologically active compounds, and offering novel ways to treat disease. Organoids of the liver, kidney, intestine, lung, and brain have been developed in recent years. Human brain organoids are used for understanding pathogenesis and investigating therapeutic options for neurodevelopmental, neuropsychiatric, neurodegenerative, and neurological disorders. Theoretically, several brain disorders can be modeled with the aid of human brain organoids, and hence the potential exists for understanding migraine pathogenesis and its treatment with the aid of brain organoids. Migraine is considered a brain disorder with neurological and non-neurological abnormalities and symptoms. Both genetic and environmental factors play essential roles in migraine pathogenesis and its clinical manifestations. Several types of migraines are classified, for example, migraines with and without aura, and human brain organoids can be developed from patients with these types of migraines to study genetic factors (e.g., channelopathy in calcium channels) and environmental stressors (e.g., chemical and mechanical). In these models, drug candidates for therapeutic purposes can also be tested. Here, the potential and limitations of human brain organoids for studying migraine pathogenesis and its treatment are communicated to generate motivation and stimulate curiosity for further research. This must, however, be considered alongside the complexity of the concept of brain organoids and the neuroethical aspects of the topic. Interested researchers are invited to join the network for protocol development and testing the hypothesis presented here.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway; or
- Centre for Intelligent Musculoskeletal Health (CIM), Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, 9220 Aalborg East, Denmark
| |
Collapse
|
9
|
Wu Y, Zhang W, Zhao Y, Wang X, Guo G. Technology development trend of electrospray ionization mass spectrometry for single-cell proteomics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Wild AR, Hogg PW, Flibotte S, Nasseri GG, Hollman RB, Abazari D, Haas K, Bamji SX. Exploring the expression patterns of palmitoylating and de-palmitoylating enzymes in the mouse brain using the curated RNA-seq database BrainPalmSeq. eLife 2022; 11:e75804. [PMID: 35819139 PMCID: PMC9365392 DOI: 10.7554/elife.75804] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Protein S-palmitoylation is a reversible post-translational lipid modification that plays a critical role in neuronal development and plasticity, while dysregulated S-palmitoylation underlies a number of severe neurological disorders. Dynamic S-palmitoylation is regulated by a large family of ZDHHC palmitoylating enzymes, their accessory proteins, and a small number of known de-palmitoylating enzymes. Here, we curated and analyzed expression data for the proteins that regulate S-palmitoylation from publicly available RNAseq datasets, providing a comprehensive overview of their distribution in the mouse nervous system. We developed a web-tool that enables interactive visualization of the expression patterns for these proteins in the nervous system (http://brainpalmseq.med.ubc.ca/), and explored this resource to find region and cell-type specific expression patterns that give insight into the function of palmitoylating and de-palmitoylating enzymes in the brain and neurological disorders. We found coordinated expression of ZDHHC enzymes with their accessory proteins, de-palmitoylating enzymes and other brain-expressed genes that included an enrichment of S-palmitoylation substrates. Finally, we utilized ZDHHC expression patterns to predict and validate palmitoylating enzyme-substrate interactions.
Collapse
Affiliation(s)
- Angela R Wild
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Peter W Hogg
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Stephane Flibotte
- Life Sciences Institute Bioinformatics Facility, University of British ColumbiaVancouverCanada
| | - Glory G Nasseri
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Rocio B Hollman
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Danya Abazari
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Kurt Haas
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| |
Collapse
|
11
|
Advances in LC-MS/MS usher in the era of single-cell proteomics. Biotechniques 2022; 72:225-227. [PMID: 35616649 DOI: 10.2144/btn-2022-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
As a new realm of single-cell studies becomes more accessible, innovative developments in one well-established technique are driving the field towards full-coverage proteomic profiles of single cells.
Collapse
|
12
|
Islimye E, Girard V, Gould AP. Functions of Stress-Induced Lipid Droplets in the Nervous System. Front Cell Dev Biol 2022; 10:863907. [PMID: 35493070 PMCID: PMC9047859 DOI: 10.3389/fcell.2022.863907] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets are highly dynamic intracellular organelles that store neutral lipids such as cholesteryl esters and triacylglycerols. They have recently emerged as key stress response components in many different cell types. Lipid droplets in the nervous system are mostly observed in vivo in glia, ependymal cells and microglia. They tend to become more numerous in these cell types and can also form in neurons as a consequence of ageing or stresses involving redox imbalance and lipotoxicity. Abundant lipid droplets are also a characteristic feature of several neurodegenerative diseases. In this minireview, we take a cell-type perspective on recent advances in our understanding of lipid droplet metabolism in glia, neurons and neural stem cells during health and disease. We highlight that a given lipid droplet subfunction, such as triacylglycerol lipolysis, can be physiologically beneficial or harmful to the functions of the nervous system depending upon cellular context. The mechanistic understanding of context-dependent lipid droplet functions in the nervous system is progressing apace, aided by new technologies for probing the lipid droplet proteome and lipidome with single-cell type precision.
Collapse
|
13
|
Babu M, Singh N, Datta A. In Vitro Oxygen Glucose Deprivation Model of Ischemic Stroke: A Proteomics-Driven Systems Biological Perspective. Mol Neurobiol 2022; 59:2363-2377. [PMID: 35080759 DOI: 10.1007/s12035-022-02745-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/11/2022] [Indexed: 01/17/2023]
Abstract
Oxygen glucose deprivation (OGD) of brain cells is the commonest in vitro model of ischemic stroke that is used extensively for basic and preclinical stroke research. Protein mass spectrometry is one of the most promising and rapidly evolving technologies in biomedical research. A systems-level understanding of cell-type-specific responses to oxygen and glucose deprivation without systemic influence is a prerequisite to delineate the response of the neurovascular unit following ischemic stroke. In this systematic review, we summarize the proteomics studies done on different OGD models. These studies have followed an expression or interaction proteomics approach. They have been primarily used to understand the cellular pathophysiology of ischemia-reperfusion injury or to assess the efficacy of interventions as potential treatment options. We compile the limitations of OGD model and downstream proteomics experiment. We further show that despite having limitations, several proteins shortlisted as altered in in vitro OGD-proteomics studies showed comparable regulation in ischemic stroke patients. This showcases the translational potential of this approach for therapeutic target and biomarker discovery. We next discuss the approaches that can be adopted for cell-type-specific validation of OGD-proteomics results in the future. Finally, we briefly present the research questions that can be addressed by OGD-proteomics studies using emerging techniques of protein mass spectrometry. We have also created a web resource compiling information from OGD-proteomics studies to facilitate data sharing for community usage. This review intends to encourage preclinical stroke community to adopt a hypothesis-free proteomics approach to understand cell-type-specific responses following ischemic stroke.
Collapse
Affiliation(s)
- Manju Babu
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Nikhil Singh
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Arnab Datta
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
14
|
Alexovič M, Sabo J, Longuespée R. Automation of single-cell proteomic sample preparation. Proteomics 2021; 21:e2100198. [PMID: 34570421 DOI: 10.1002/pmic.202100198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 11/10/2022]
Abstract
Molecular heterogeneity exists at different spatial scales in biological samples and is an important parameter in the development of pathologies and resistances to therapies. When aiming to reach molecular heterogeneity of cells at extremely low spatial scales, single-cell analysis can be the ultimate choice. Proteomics performed in bulk population of cells (macroproteomics) is prone to mask molecular heterogeneity. Mass spectrometry-based single cell proteomics (SCP-MS) is the right solution to overcome this issue. Three main problems can be identified using SCP-MS: (i) analytical loss during sample preparation, (ii) inefficient microinjection/delivery of proteins/peptides from samples to MS and (iii) low analytical throughput. Technologies for automation of SCP have recently gained attention to improve methods accuracy, sensitivity, throughput and in-depth and low-biased proteome analysis. In this minireview, we therefore overview the state-of-the-art of automation of SCP-MS sample preparation approaches.
Collapse
Affiliation(s)
- Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Košice, Slovakia
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Košice, Slovakia
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
15
|
Porciúncula LO, Goto-Silva L, Ledur PF, Rehen SK. The Age of Brain Organoids: Tailoring Cell Identity and Functionality for Normal Brain Development and Disease Modeling. Front Neurosci 2021; 15:674563. [PMID: 34483818 PMCID: PMC8414411 DOI: 10.3389/fnins.2021.674563] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Over the past years, brain development has been investigated in rodent models, which were particularly relevant to establish the role of specific genes in this process. However, the cytoarchitectonic features, which determine neuronal network formation complexity, are unique to humans. This implies that the developmental program of the human brain and neurological disorders can only partly be reproduced in rodents. Advancement in the study of the human brain surged with cultures of human brain tissue in the lab, generated from induced pluripotent cells reprogrammed from human somatic tissue. These cultures, termed brain organoids, offer an invaluable model for the study of the human brain. Brain organoids reproduce the cytoarchitecture of the cortex and can develop multiple brain regions and cell types. Integration of functional activity of neural cells within brain organoids with genetic, cellular, and morphological data in a comprehensive model for human development and disease is key to advance in the field. Because the functional activity of neural cells within brain organoids relies on cell repertoire and time in culture, here, we review data supporting the gradual formation of complex neural networks in light of cell maturity within brain organoids. In this context, we discuss how the technology behind brain organoids brought advances in understanding neurodevelopmental, pathogen-induced, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lisiane O. Porciúncula
- Department of Biochemistry, Program of Biological Sciences - Biochemistry, Institute of Health and Basic Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Livia Goto-Silva
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Pitia F. Ledur
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Stevens K. Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Hiltunen N, Väyrynen JP, Böhm J, Helminen O. CD3 +, CD8 +, CD4 + and FOXP3 + T Cells in the Immune Microenvironment of Small Bowel Neuroendocrine Tumors. Diseases 2021; 9:diseases9020042. [PMID: 34208144 PMCID: PMC8293127 DOI: 10.3390/diseases9020042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
The role of inflammation in neuroendocrine tumors is poorly known. The purpose of this study was to characterize the densities of CD3+, CD8+, CD4+ and FOXP3+ T cells in small bowel neuroendocrine tumors (SB-NETs), SB-NET lymph node metastases and gastric neuroendocrine tumors (G-NETs) to assess the prognostic role of immune cell infiltrates in SB-NETs. The final cohort included 113 SB-NETs, 75 SB-NET lymph node metastases and 19 G-NETs from two Finnish hospitals. CD3+- and CD8+-based immune cell score (ICS), and other T cell densities were evaluated. Survival analyses of SB-NETs and SB-NET lymph node metastases were performed with the Kaplan-Meier method and Cox regression adjusted for confounders. The primary outcome was disease-specific survival (DSS). No significant difference in DSS was seen between low and high ICS groups in SB-NETs at 5 years (92.6% vs. 87.8%) or 10 years (53.8% vs. 79.4%), p = 0.507, or in SB-NET lymph node metastases at 5 years (88.9% vs. 90.4%) or 10 years (71.1% vs. 59.8%), p = 0.466. Individual densities of the examined T cell types showed no correlation with prognosis either. SB-NETs and lymph node metastases had similar inflammatory cell profiles, whereas in G-NETs CD3+ and CD8+ T cells were particularly more abundant. In SB-NETs, ICS or T cell densities showed no correlation with prognosis.
Collapse
Affiliation(s)
- Niko Hiltunen
- Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.P.V.); (O.H.)
- Correspondence:
| | - Juha P. Väyrynen
- Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.P.V.); (O.H.)
- Department of Pathology, Central Finland Central Hospital, 40620 Jyväskylä, Finland;
| | - Jan Böhm
- Department of Pathology, Central Finland Central Hospital, 40620 Jyväskylä, Finland;
| | - Olli Helminen
- Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.P.V.); (O.H.)
- Surgery Research Unit, Medical Research Center, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland
| |
Collapse
|