1
|
Georgakis N, Premetis GE, Pantiora P, Varotsou C, Bodourian CS, Labrou NE. The impact of metagenomic analysis on the discovery of novel endolysins. Appl Microbiol Biotechnol 2025; 109:126. [PMID: 40411603 PMCID: PMC12103483 DOI: 10.1007/s00253-025-13513-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 05/04/2025] [Accepted: 05/05/2025] [Indexed: 05/26/2025]
Abstract
Metagenomics has revolutionized enzyme discovery by enabling the study of genetic material directly from environmental samples, bypassing the need for microbial cultivation. This approach is particularly effective for identifying novel endolysins, phage-derived enzymes with antibacterial properties suited for therapeutic and industrial applications. Diverse ecosystems, such as biofilms, human microbiome, hot springs, and geothermal areas, serve as rich reservoirs for endolysins with traits like thermostability, broad-spectrum activity, specificity and resistance to harsh conditions. Functional metagenomics, complemented by bioinformatics, enables the discovery and annotation of previously uncharacterized endolysins. Examples of endolysins discovered from metagenomics analysis are discussed. Despite the challenges of analyzing complex microbial ecosystems and isolating target genes, metagenomics holds immense potential for uncovering innovative endolysins, paving the way for developing new biotechnological applications. KEY POINTS: • Endolysins offer antibacterial potential for therapeutic and industrial use. • Metagenomics enables discovery of novel endolysins from diverse ecosystems. • Advances in tools and methods have accelerated novel endolysins discovery.
Collapse
Affiliation(s)
- Nikolaos Georgakis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, Athens, 11855, Greece
| | - Georgios E Premetis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, Athens, 11855, Greece
| | - Panagiota Pantiora
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, Athens, 11855, Greece
| | - Christina Varotsou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, Athens, 11855, Greece
| | - Charoutioun S Bodourian
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, Athens, 11855, Greece
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, Athens, 11855, Greece.
| |
Collapse
|
2
|
Jiang Z, Mei L, Li Y, Guo Y, Yang B, Huang Z, Li Y. Enzymatic Regulation of the Gut Microbiota: Mechanisms and Implications for Host Health. Biomolecules 2024; 14:1638. [PMID: 39766345 PMCID: PMC11727233 DOI: 10.3390/biom14121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The gut microbiota, a complex ecosystem, is vital to host health as it aids digestion, modulates the immune system, influences metabolism, and interacts with the brain-gut axis. Various factors influence the composition of this microbiota. Enzymes, as essential catalysts, actively participate in biochemical reactions that have an impact on the gut microbial community, affecting both the microorganisms and the gut environment. Enzymes play an important role in the regulation of the intestinal microbiota, but the interactions between enzymes and microbial communities, as well as the precise mechanisms of enzymes, remain a challenge in scientific research. Enzymes serve both traditional nutritional functions, such as the breakdown of complex substrates into absorbable small molecules, and non-nutritional roles, which encompass antibacterial function, immunomodulation, intestinal health maintenance, and stress reduction, among others. This study categorizes enzymes according to their source and explores the mechanistic principles by which enzymes drive gut microbial activity, including the promotion of microbial proliferation, the direct elimination of harmful microbes, the modulation of bacterial interaction networks, and the reduction in immune stress. A systematic understanding of enzymes in regulating the gut microbiota and the study of their associated molecular mechanisms will facilitate the application of enzymes to precisely regulate the gut microbiota in the future and suggest new therapeutic strategies and dietary recommendations. In conclusion, this review provides a comprehensive overview of the role of enzymes in modulating the gut microbiota. It explores the underlying molecular and cellular mechanisms and discusses the potential applications of enzyme-mediated microbiota regulation for host gut health.
Collapse
Affiliation(s)
- Zipeng Jiang
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liang Mei
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yuqi Li
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yuguang Guo
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Bo Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiyi Huang
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yangyuan Li
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| |
Collapse
|
3
|
Liu J, Wu Q, Malakar PK, Zhu Y, Zhao Y, Zhang Z. Mining and multifaceted applications of phage lysin for combatting Vibrio parahaemolyticus. Food Res Int 2024; 192:114819. [PMID: 39147512 DOI: 10.1016/j.foodres.2024.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Vibrio parahaemolyticus, a prevalent foodborne pathogen found in both water and seafood, poses substantial risks to public health. The conventional countermeasure, antibiotics, has exacerbated the issue of antibiotic resistance, increasing the difficulty of controlling this bacterium. Phage lysins, as naturally occurring active proteins, offer a safe and reliable strategy to mitigate the impact of V. parahaemolyticus on public health. However, there is currently a research gap concerning bacteriophage lysins specific to Vibrio species. To address this, our study innovatively and systematically evaluates 37 phage lysins sourced from the NCBI database, revealing a diverse array of conserved domains and notable variations in similarity among Vibrio phage lysins. Three lysins, including Lyz_V_pgrp, Lyz_V_prgp60, and Lyz_V_zlis, were successfully expressed and purified. Optimal enzymatic activity was observed at 45℃, 800 mM NaCl, and pH 8-10, with significant enhancements noted in the presence of 1 mM membrane permeabilizers such as EDTA or organic acids. These lysins demonstrated effective inhibition against 63 V. parahaemolyticus isolates from clinical, food, and environmental sources, including the reversal of partial resistance, synergistic interactions with antibiotics, and disruption of biofilms. Flow cytometry analyses revealed that the combination of Lyz_V_pgp60 and gentamicin markedly increased bacterial killing rates. Notably, Lyz_V_pgrp, Lyz_V_pgp60, and Lyz_V_zlis exhibited highly efficient biofilm hydrolysis, clearing over 90 % of preformed V. parahaemolyticus biofilms within 48 h. Moreover, these lysins significantly reduced bacterial loads in various food samples and environmental sources, with reductions averaging between 1.06 and 1.29 Log CFU/cm2 on surfaces such as stainless-steel and bamboo cutting boards and approximately 0.87 CFU/mL in lake water and sediment samples. These findings underscore the exceptional efficacy and versatile application potential of phage lysins, offering a promising avenue for controlling V. parahaemolyticus contamination in both food and environmental contexts.
Collapse
Affiliation(s)
- Jing Liu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
| | - Qian Wu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China.
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
4
|
Khan FM, Rasheed F, Yang Y, Liu B, Zhang R. Endolysins: a new antimicrobial agent against antimicrobial resistance. Strategies and opportunities in overcoming the challenges of endolysins against Gram-negative bacteria. Front Pharmacol 2024; 15:1385261. [PMID: 38831886 PMCID: PMC11144922 DOI: 10.3389/fphar.2024.1385261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
Antibiotic-resistant bacteria are rapidly emerging, and the increasing prevalence of multidrug-resistant (MDR) Acinetobacter baumannii poses a severe threat to humans and healthcare organizations, due to the lack of innovative antibacterial drugs. Endolysins, which are peptidoglycan hydrolases encoded by a bacteriophage, are a promising new family of antimicrobials. Endolysins have been demonstrated as an effective therapeutic agent against bacterial infections of A. baumannii and many other Gram-positive and Gram-negative bacteria. Endolysin research has progressed from basic in vitro characterization to sophisticated protein engineering methodologies, including advanced preclinical and clinical testing. Endolysin are therapeutic agent that shows antimicrobial properties against bacterial infections caused by drug-resistant Gram-negative bacteria, there are still barriers to their implementation in clinical settings, such as safety concerns with outer membrane permeabilizers (OMP) use, low efficiency against stationary phase bacteria, and stability issues. The application of protein engineering and formulation techniques to improve enzyme stability, as well as combination therapy with other types of antibacterial drugs to optimize their medicinal value, have been reviewed as well. In this review, we summarize the clinical development of endolysin and its challenges and approaches for bringing endolysin therapies to the clinic. This review also discusses the different applications of endolysins.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Fazal Rasheed
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yunlan Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
5
|
Sisson HM, Jackson SA, Fagerlund RD, Warring SL, Fineran PC. Gram-negative endolysins: overcoming the outer membrane obstacle. Curr Opin Microbiol 2024; 78:102433. [PMID: 38350268 DOI: 10.1016/j.mib.2024.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Our ability to control the growth of Gram-negative bacterial pathogens is challenged by rising antimicrobial resistance and requires new approaches. Endolysins are phage-derived enzymes that degrade peptidoglycan and therefore offer potential as antimicrobial agents. However, the outer membrane (OM) of Gram-negative bacteria impedes the access of externally applied endolysins to peptidoglycan. This review highlights recent advances in the discovery and characterization of natural endolysins that can breach the OM, as well as chemical and engineering approaches that increase antimicrobial efficacy of endolysins against Gram-negative pathogens.
Collapse
Affiliation(s)
- Hazel M Sisson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Suzanne L Warring
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
6
|
Pantiora PD, Georgakis ND, Premetis GE, Labrou NE. Metagenomic analysis of hot spring soil for mining a novel thermostable enzybiotic. Appl Microbiol Biotechnol 2024; 108:163. [PMID: 38252132 PMCID: PMC10803476 DOI: 10.1007/s00253-023-12979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
The misuse and overuse of antibiotics have contributed to a rapid emergence of antibiotic-resistant bacterial pathogens. This global health threat underlines the urgent need for innovative and novel antimicrobials. Endolysins derived from bacteriophages or prophages constitute promising new antimicrobials (so-called enzybiotics), exhibiting the ability to break down bacterial peptidoglycan (PG). In the present work, metagenomic analysis of soil samples, collected from thermal springs, allowed the identification of a prophage-derived endolysin that belongs to the N-acetylmuramoyl-L-alanine amidase type 2 (NALAA-2) family and possesses a LysM (lysin motif) region as a cell wall binding domain (CWBD). The enzyme (Ami1) was cloned and expressed in Escherichia coli, and its bactericidal and lytic activity was characterized. The results indicate that Ami1 exhibits strong bactericidal and antimicrobial activity against a broad range of bacterial pathogens, as well as against isolated peptidoglycan (PG). Among the examined bacterial pathogens, Ami1 showed highest bactericidal activity against Staphylococcus aureus sand Staphylococcus epidermidis cells. Thermostability analysis revealed a melting temperature of 64.2 ± 0.6 °C. Overall, these findings support the potential that Ami1, as a broad spectrum antimicrobial agent, could be further assessed as enzybiotic for the effective treatment of bacterial infections. KEY POINTS: • Metagenomic analysis allowed the identification of a novel prophage endolysin • The endolysin belongs to type 2 amidase family with lysin motif region • The endolysin displays high thermostability and broad bactericidal spectrum.
Collapse
Affiliation(s)
- Panagiota D Pantiora
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece
| | - Nikolaos D Georgakis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece
| | - Georgios E Premetis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece.
| |
Collapse
|
7
|
Szadkowska M, Kocot AM, Sowik D, Wyrzykowski D, Jankowska E, Kozlowski LP, Makowska J, Plotka M. Molecular characterization of the PhiKo endolysin from Thermus thermophilus HB27 bacteriophage phiKo and its cryptic lytic peptide RAP-29. Front Microbiol 2024; 14:1303794. [PMID: 38312500 PMCID: PMC10836841 DOI: 10.3389/fmicb.2023.1303794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/12/2023] [Indexed: 02/06/2024] Open
Abstract
Introduction In the era of increasing bacterial resistance to antibiotics, new bactericidal substances are sought, and lysins derived from extremophilic organisms have the undoubted advantage of being stable under harsh environmental conditions. The PhiKo endolysin is derived from the phiKo bacteriophage infecting Gram-negative extremophilic bacterium Thermus thermophilus HB27. This enzyme shows similarity to two previously investigated thermostable type-2 amidases, the Ts2631 and Ph2119 from Thermus scotoductus bacteriophages, that revealed high lytic activity not only against thermophiles but also against Gram-negative mesophilic bacteria. Therefore, antibacterial potential of the PhiKo endolysin was investigated in the study presented here. Methods Enzyme activity was assessed using turbidity reduction assays (TRAs) and antibacterial tests. Differential scanning calorimetry was applied to evaluate protein stability. The Collection of Anti-Microbial Peptides (CAMP) and Antimicrobial Peptide Calculator and Predictor (APD3) were used to predict regions with antimicrobial potential in the PhiKo primary sequence. The minimum inhibitory concentration (MIC) of the RAP-29 synthetic peptide was determined against Gram-positive and Gram-negative selected strains, and mechanism of action was investigated with use of membrane potential sensitive fluorescent dye 3,3'-Dipropylthiacarbocyanine iodide (DiSC3(5)). Results and discussion The PhiKo endolysin is highly thermostable with melting temperature of 91.70°C. However, despite its lytic effect against such extremophiles as: T. thermophilus, Thermus flavus, Thermus parvatiensis, Thermus scotoductus, and Deinococcus radiodurans, PhiKo showed moderate antibacterial activity against mesophiles. Consequently, its protein sequence was searched for regions with potential antibacterial activity. A highly positively charged region was identified and synthetized (PhiKo105-133). The novel RAP-29 peptide lysed mesophilic strains of staphylococci and Gram-negative bacteria, reducing the number of cells by 3.7-7.1 log units and reaching the minimum inhibitory concentration values in the range of 2-31 μM. This peptide is unstructured in an aqueous solution but forms an α-helix in the presence of detergents. Moreover, it binds lipoteichoic acid and lipopolysaccharide, and causes depolarization of bacterial membranes. The RAP-29 peptide is a promising candidate for combating bacterial pathogens. The existence of this cryptic peptide testifies to a much wider panel of antimicrobial peptides than thought previously.
Collapse
Affiliation(s)
- Monika Szadkowska
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Maria Kocot
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdańsk, Gdańsk, Poland
| | - Daria Sowik
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Dariusz Wyrzykowski
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Elzbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Lukasz Pawel Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Joanna Makowska
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|