1
|
Drygała S, Radzikowski M, Maciejczyk M. β-blockers and metabolic modulation: unraveling the complex interplay with glucose metabolism, inflammation and oxidative stress. Front Pharmacol 2024; 15:1489657. [PMID: 39759452 PMCID: PMC11695285 DOI: 10.3389/fphar.2024.1489657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
The growing burden of metabolic disorders manifested by hypertension, type 2 diabetes mellitus, hyperlipidemia, obesity and non-alcoholic fatty liver disease presents a significant global health challenge by contributing to cardiovascular diseases and high mortality rates. Β-blockers are among the most widely used drugs in the treatment of hypertension and acute cardiovascular events. In addition to blocking the receptor sites for catecholamines, third-generation β-blockers with associated vasodilating properties, such as carvedilol and nebivolol, provide a broad spectrum of metabolic effects, including anti-inflammatory and antioxidant properties and a favorable impact on glucose and lipid metabolism. This review aims to report the impact of β-blockers on metabolic modulation based on available literature data. We present an overview of β-blockers and their pleiotropic properties, discuss mechanisms by which these drugs affect cellular metabolism and outline the future perspectives. The influence of β-blockers on glucose metabolism, insulin sensitivity, inflammation and oxidative stress is complex and varies depending on the specific β-blocker used, patient population and underlying health conditions. Recent evidence particularly highlights the potential role of vasodilatory and nitric oxide-mediated properties of nebivolol and carvedilol in improving glycemic control, insulin sensitivity, and lipid metabolism and mitigating oxidative stress and inflammation. It suggests that these drugs may be potential therapeutic options for patients with metabolic disorders, extending beyond their primary role in cardiovascular management.
Collapse
Affiliation(s)
- Szymon Drygała
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Michał Radzikowski
- Biochemistry of Civilisation Diseases’ Students’ Scientific Club at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Duarte Mendes A, Freitas AR, Vicente R, Ferreira R, Martins T, Ramos MJ, Baptista C, Silva BM, Margarido I, Vitorino M, Silva M, Braga S. Beta-Adrenergic Blockade in Advanced Non-Small Cell Lung Cancer Patients Receiving Immunotherapy: A Multicentric Study. Cureus 2024; 16:e52194. [PMID: 38348009 PMCID: PMC10859721 DOI: 10.7759/cureus.52194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction The standard treatment of cancer has dramatically improved with immune checkpoint inhibitors (ICIs). Despite their proven advantage, many patients fail to exhibit a meaningful and lasting response. The beta-adrenergic signalling pathway may hold significant promise due to its role in promoting an immunosuppressive milieu within the tumour microenvironment. Inhibiting β-adrenergic signalling could enhance ICI activity; however, blocking this pathway for this purpose has yielded conflicting results. The primary objective of this study was to evaluate the effect of beta-blocker use on overall survival and progression-free survival during ICI therapy. Methods A multicentric, retrospective, observational study was conducted in four Portuguese institutions. Patients with advanced non-small cell lung cancer treated with ICIs between January 2018 and December 2019 were included. Those using beta blockers for non-oncological reasons were compared with non-users. Results Among the 171 patients included, 36 concomitantly received beta blockers and ICIs. No significant increase was found in progression-free survival among patients who took β-blockers (HR 0.74, 95% confidence interval (CI) 0.48-1.12, p = 0.151), and no statistically significant difference was found in overall survival. An apparent trend was observed towards better outcomes in the beta-blocker group, with a median overall survival of 9.93 months in the group not taking β-blockers versus 14.90 months in the β-blocker group (p = 0.291) and a median progression-free survival of 5.37 in the group not taking β-blockers versus 10.87 months in the β-blocker group (p = 0.151). Nine (25%) patients in the beta-blocker group and 16 (12%) in the non-beta-blocker group were progressive disease-free at the end of follow-up. This difference between the two groups is statistically significant (p = 0.047). Conclusion Our study found no statistically significant evidence that beta blockers enhance the effectiveness of immunotherapy. Using adrenergic blockade to modulate the immune system shows promise, warranting the need to develop prospective clinical studies.
Collapse
Affiliation(s)
- Ana Duarte Mendes
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Ana Rita Freitas
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Rodrigo Vicente
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Ricardo Ferreira
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Telma Martins
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Maria João Ramos
- Medical Oncology Department, Centro Hospitalar Universitário de Santo António, Porto, PRT
| | - Carlota Baptista
- Medical Oncology Department, Hospital Beatriz Ângelo, Loures, PRT
| | | | - Inês Margarido
- Medical Oncology Department, Hospital da Luz Lisboa, Lisboa, PRT
| | - Marina Vitorino
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Michelle Silva
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Sofia Braga
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| |
Collapse
|
3
|
Garramona FT, Cunha TF, Vieira JS, Borges G, Santos G, de Castro G, Ugrinowitsch C, Brum PC. Increased sympathetic nervous system impairs prognosis in lung cancer patients: a scoping review of clinical studies. Lung Cancer Manag 2023; 12:LMT63. [PMID: 38239811 PMCID: PMC10794895 DOI: 10.2217/lmt-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/16/2023] [Indexed: 01/22/2024] Open
Abstract
Aim To summarize current knowledge, gaps, quality of the evidence and show main results related to the role of the autonomic nervous system in lung cancer. Methods Studies were identified through electronic databases (PubMed, Scopus, Embase and Cochrane Library) in October 2023, and a descriptive analysis was performed. Twenty-four studies were included, and most were observational. Results Our data indicated an increased expression of β-2-adrenergic receptors in lung cancer, which was associated with poor prognosis. However, the use of β-blockers as an add-on to standard treatment promoted enhanced overall survival, recurrence-free survival and reduced metastasis occurrence. Conclusion Although the results herein seem promising, future research using high-quality prospective clinical trials is required to draw directions to guide clinical interventions.
Collapse
Affiliation(s)
- Fabrício T Garramona
- University of Sorocaba, Sao Paulo, 18023-000, Brazil
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| | - Telma F Cunha
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
- Paulista University, Sao Paulo, 01533-000, Brazil
| | - Janaína S Vieira
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| | - Gabriela Borges
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| | - Gabriela Santos
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| | - Gilberto de Castro
- Cancer Institute of the State of Sao Paulo (ICESP), Clinical Hospital of Medical College - University of Sao Paulo, Sao Paulo, 01246-000, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| | - Patrícia C Brum
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| |
Collapse
|
4
|
Fjæstad KY, Rømer AMA, Goitea V, Johansen AZ, Thorseth ML, Carretta M, Engelholm LH, Grøntved L, Junker N, Madsen DH. Blockade of beta-adrenergic receptors reduces cancer growth and enhances the response to anti-CTLA4 therapy by modulating the tumor microenvironment. Oncogene 2022; 41:1364-1375. [PMID: 35017664 PMCID: PMC8881216 DOI: 10.1038/s41388-021-02170-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022]
Abstract
The development of immune checkpoint inhibitors (ICI) marks an important breakthrough of cancer therapies in the past years. However, only a limited fraction of patients benefit from such treatments, prompting the search for immune modulating agents that can improve the therapeutic efficacy. The nonselective beta blocker, propranolol, which for decades has been prescribed for the treatment of cardiovascular conditions, has recently been used successfully to treat metastatic angiosarcoma. These results have led to an orphan drug designation by the European Medicines Agency for the treatment of soft tissue sarcomas. The anti-tumor effects of propranolol are suggested to involve the reduction of cancer cell proliferation as well as angiogenesis. Here, we show that oral administration of propranolol delays tumor progression of MCA205 fibrosarcoma model and MC38 colon cancer model and increases the survival rate of tumor bearing mice. Propranolol works by reducing tumor angiogenesis and facilitating an anti-tumoral microenvironment with increased T cell infiltration and reduced infiltration of myeloid-derived suppressor cells (MDSCs). Using T cell deficient mice, we demonstrate that the full anti-tumor effect of propranolol requires the presence of T cells. Flow cytometry-based analysis and RNA sequencing of FACS-sorted cells show that propranolol treatment leads to an upregulation of PD-L1 on tumor associated macrophages (TAMs) and changes in their chemokine expression profile. Lastly, we observe that the co-administration of propranolol significantly enhances the efficacy of anti-CTLA4 therapy. Our results identify propranolol as an immune modulating agent, which can improve immune checkpoint inhibitor therapies in soft tissue sarcoma patients and potentially in other cancers.
Collapse
Affiliation(s)
- Klaire Yixin Fjæstad
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anne Mette Askehøj Rømer
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Victor Goitea
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Astrid Zedlitz Johansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Marie-Louise Thorseth
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Marco Carretta
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Lars Henning Engelholm
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Niels Junker
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Daniel Hargbøl Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Drouin JS, Pfalzer L, Shim JM, Kim SJ. Comparisons between Manual Lymph Drainage, Abdominal Massage, and Electrical Stimulation on Functional Constipation Outcomes: A Randomized, Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113924. [PMID: 32492920 PMCID: PMC7313091 DOI: 10.3390/ijerph17113924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Evidence supports abdominal massage (AM) or electrical stimulation (ES) as effective in treating functional constipation (FC). Manual lymph drainage (MLD) may also be beneficial, however, it was not previously investigated or compared to ES and AM. METHODS Sixteen college-aged males and 36 females were recruited. Participants were randomly assigned to MLD, AM or ES. Heart rate variability (HRV) measures for total power (TP), high frequency (HF), low frequency and LF/HF ratio assessed ANS outcomes. state-trait anxiety inventory (STAI) and stress response inventory (SRI) assessed psychological factors and bowel movement frequency (BMF) and duration (BMD) were recorded daily. RESULTS MLD significantly improved all ANS measures (p≤0.01); AM significantly improved LF, HF and LF/HF ratios (p = 0.04); and ES significantly improved LF (p = 0.1). STAI measures improved, but not significantly in all groups. SRI improved significantly from MLD (p < 0.01), AM (p = 0.04) and ES (p < 0.01), but changes were not significant between groups. BMD improved significantly in all groups (p≤ 0.02). BMF improved significantly only following MLD and AM (p < 0.1), but differences between groups were not significant (p = 0.39). CONCLUSIONS MLD significantly reduced FC symptoms and MLD had greater improvements than AM or ES.
Collapse
Affiliation(s)
- Jacqueline S. Drouin
- School of Health Sciences, Oakland University, 433 Meadow Brook Road, Rochester, MI 48309-4451, USA;
| | - Lucinda Pfalzer
- Physical Therapy Department, University of Michigan-Flint, 2157 WSW Bldg., Flint, MI 48502-195, USA;
| | - Jung Myo Shim
- Department of Skin and Health Care, Suseong University, 15 Dalgubeol-daero 528-gil, Suseong-gu, Daegu 13557, Korea;
| | - Seong Jung Kim
- Department of Physical Therapy, College of Health and Science, Kangwon National University, 346, Hwangjo-gil, Dogye-eup, Samcheok-si, Gangwon-do 24341, Korea
- Correspondence: ; Tel.: +82-33-540-3371
| |
Collapse
|
6
|
Di YZ, Han BS, Di JM, Liu WY, Tang Q. Role of the brain-gut axis in gastrointestinal cancer. World J Clin Cases 2019; 7:1554-1570. [PMID: 31367615 PMCID: PMC6658366 DOI: 10.12998/wjcc.v7.i13.1554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023] Open
Abstract
Several studies have largely focused on the significant role of the nervous and immune systems in the process of tumorigenesis, including tumor growth, proliferation, apoptosis, and metastasis. The brain-gut-axis is a new paradigm in neuroscience, which describes the biochemical signaling between the gastrointestinal (GI) tract and the central nervous system. This axis may play a critical role in the tumorigenesis and development of GI cancers. Mechanistically, the bidirectional signal transmission of the brain-gut-axis is complex and remains to be elucidated. In this article, we review the current findings concerning the relationship between the brain-gut axis and GI cancer cells, focusing on the significant role of the brain-gut axis in the processes of tumor proliferation, invasion, apoptosis, autophagy, and metastasis. It appears that the brain might modulate GI cancer by two pathways: the anatomical nerve pathway and the neuroendocrine route. The simulation and inactivation of the central nervous, sympathetic, and parasympathetic nervous systems, or changes in the innervation of the GI tract might contribute to a higher incidence of GI cancers. In addition, neurotransmitters and neurotrophic factors can produce stimulatory or inhibitory effects in the progression of GI cancers. Insights into these mechanisms may lead to the discovery of potential prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Yang-Zi Di
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Bo-Sheng Han
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 443000, Hubei Province, China
| | - Jun-Mao Di
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Wei-Yan Liu
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Qiang Tang
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| |
Collapse
|
7
|
Zhou Y, Shurin GV, Zhong H, Bunimovich YL, Han B, Shurin MR. Schwann Cells Augment Cell Spreading and Metastasis of Lung Cancer. Cancer Res 2018; 78:5927-5939. [PMID: 30135194 DOI: 10.1158/0008-5472.can-18-1702] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/12/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
Abstract
Although lungs are densely innervated by the peripheral nervous system (PNS), the role of the PNS in the progression of lung cancer is unknown. In this study, we report that mouse adult Schwann cells (SC), the principal glial cells of the PNS, can regulate the motility of lung cancer cells in vitro and the formation of metastases in vivo SCs promoted epithelial-to-mesenchymal transition (EMT) and the motility of two lung cancer cell lines by increasing expression of Snail and Twist in tumor cells; blocking of Snail and Twist expression abolished SC-induced motility of tumor cells. SC-derived CXCL5 was responsible for EMT in lung cancer cells, as the inhibition of CXCL5 or its receptor CXCR2 reduced SC-induced expression of Snail and Twist and reduced motility in tumor cells. CXCL5/CXCR2 binding activated the PI3K/AKT/GSK-3β/Snail-Twist signaling pathway in lung cancer cells, and the PI3K inhibitor blocked CXCL5-dependent phosphorylation of AKT and GSK-3β, reduced expression of Snail/Twist, and limited tumor cell invasiveness. SC conditioning of tumor cells prior to their injection into mice significantly increased the formation of metastases in the regional lymph nodes. In summary, SCs can regulate the CXCL5/CXCR2/PI3K/AKT/GSK-3β/Snail-Twist pathway to promote EMT, invasiveness, and metastatic potential of lung cancer cells. Our results reveal a new role of the PNS in the functional organization of the tumor microenvironment and tumor progression.Significance: This study increases our understanding of how nerves and, in particular, specific glial cells, Schwann cells, in the peripheral nervous system, may help promote tumor growth and metastasis. Cancer Res; 78(20); 5927-39. ©2018 AACR.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Hua Zhong
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuri L Bunimovich
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Baohui Han
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania. .,Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Jin MZ, Han RR, Qiu GZ, Ju XC, Lou G, Jin WL. Organoids: An intermediate modeling platform in precision oncology. Cancer Lett 2018; 414:174-180. [PMID: 29174804 DOI: 10.1016/j.canlet.2017.11.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023]
Abstract
Cancer harbors variable heterogeneity and plasticity. Thus far, our comprehension is greatly based on cell lines, organoids, and patient-derived tumor xenografts (PDTXs). Organoids are a three-dimensional in vitro culture platform constructed from self-organizing stem cells. They can almost accurately recapitulate tumor heterogeneity and microenvironment "in a dish," which surpass established cell lines and are not as expensive and time-consuming as PDTXs. As an intermediate model, tumor organoids are also used to study the fundamental issues of tumorigenesis and metastasis. They are specifically applied for drug testing and stored as "living biobanks." In this review, we highlight the translational applications of organoid technologies in tumor research and precision medicine, discuss the advantages and limitations compared with other mentioned methods, and provide our outlook on its future.
Collapse
Affiliation(s)
- Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Run-Run Han
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Guan-Zhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan 250031, PR China
| | - Xiang-Chun Ju
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China.
| | - Ge Lou
- Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086, PR China.
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, PR China.
| |
Collapse
|