1
|
Verma A, Yadav AK. Brain tumor segmentation with deep learning: Current approaches and future perspectives. J Neurosci Methods 2025; 418:110424. [PMID: 40122469 DOI: 10.1016/j.jneumeth.2025.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/21/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Accurate brain tumor segmentation from MRI images is critical in the medical industry, directly impacts the efficacy of diagnostic and treatment plans. Accurate segmentation of tumor region can be challenging, especially when noise and abnormalities are present. METHOD This research provides a systematic review of automatic brain tumor segmentation techniques, with a specific focus on the design of network architectures. The review categorizes existing methods into unsupervised and supervised learning techniques, as well as machine learning and deep learning approaches within supervised techniques. Deep learning techniques are thoroughly reviewed, with a particular focus on CNN-based, U-Net-based, transfer learning-based, transformer-based, and hybrid transformer-based methods. SCOPE AND COVERAGE This survey encompasses a broad spectrum of automatic segmentation methodologies, from traditional machine learning approaches to advanced deep learning frameworks. It provides an in-depth comparison of performance metrics, model efficiency, and robustness across multiple datasets, particularly the BraTS dataset. The study further examines multi-modal MRI imaging and its influence on segmentation accuracy, addressing domain adaptation, class imbalance, and generalization challenges. COMPARISON WITH EXISTING METHODS The analysis highlights the current challenges in Computer-aided Diagnostic (CAD) systems, examining how different models and imaging sequences impact performance. Recent advancements in deep learning, especially the widespread use of U-Net architectures, have significantly enhanced medical image segmentation. This review critically evaluates these developments, focusing the iterative improvements in U-Net models that have driven progress in brain tumor segmentation. Furthermore, it explores various techniques for improving U-Net performance for medical applications, focussing on its potential for improving diagnostic and treatment planning procedures. CONCLUSION The efficiency of these automated segmentation approaches is rigorously evaluated using the BraTS dataset, a benchmark dataset, part of the annual Multimodal Brain Tumor Segmentation Challenge (MICCAI). This evaluation provides insights into the current state-of-the-art and identifies key areas for future research and development.
Collapse
Affiliation(s)
- Akash Verma
- Department of Computer Science & Engineering, NIT Hamirpur (HP), India.
| | - Arun Kumar Yadav
- Department of Computer Science & Engineering, NIT Hamirpur (HP), India.
| |
Collapse
|
2
|
Dehghani F, Karimian A, Arabi H. Joint Brain Tumor Segmentation from Multi-magnetic Resonance Sequences through a Deep Convolutional Neural Network. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:9. [PMID: 38993203 PMCID: PMC11111160 DOI: 10.4103/jmss.jmss_13_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 07/13/2024]
Abstract
Background Brain tumor segmentation is highly contributive in diagnosing and treatment planning. Manual brain tumor delineation is a time-consuming and tedious task and varies depending on the radiologist's skill. Automated brain tumor segmentation is of high importance and does not depend on either inter- or intra-observation. The objective of this study is to automate the delineation of brain tumors from the Fluid-attenuated inversion recovery (FLAIR), T1-weighted (T1W), T2-weighted (T2W), and T1W contrast-enhanced (T1ce) magnetic resonance (MR) sequences through a deep learning approach, with a focus on determining which MR sequence alone or which combination thereof would lead to the highest accuracy therein. Methods The BraTS-2020 challenge dataset, containing 370 subjects with four MR sequences and manually delineated tumor masks, is applied to train a residual neural network. This network is trained and assessed separately for each one of the MR sequences (single-channel input) and any combination thereof (dual- or multi-channel input). Results The quantitative assessment of the single-channel models reveals that the FLAIR sequence would yield higher segmentation accuracy compared to its counterparts with a 0.77 ± 0.10 Dice index. As to considering the dual-channel models, the model with FLAIR and T2W inputs yields a 0.80 ± 0.10 Dice index, exhibiting higher performance. The joint tumor segmentation on the entire four MR sequences yields the highest overall segmentation accuracy with a 0.82 ± 0.09 Dice index. Conclusion The FLAIR MR sequence is considered the best choice for tumor segmentation on a single MR sequence, while the joint segmentation on the entire four MR sequences would yield higher tumor delineation accuracy.
Collapse
Affiliation(s)
- Farzaneh Dehghani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Alireza Karimian
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Hossein Arabi
- Department of Medical Imaging, Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
3
|
Faragallah OS, El-Hoseny HM, El-sayed HS. Efficient brain tumor segmentation using OTSU and K-means clustering in homomorphic transform. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
4
|
Chandra A, Verma S, Raghuvanshi A, Kuber Bodhey N. PCcS-RAU-Net: Automated parcellated Corpus callosum segmentation from brain MRI images using modified residual attention U-Net. Biocybern Biomed Eng 2023. [DOI: 10.1016/j.bbe.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
5
|
Krishnamoorthy S, Paulraj S, Selvaraj NP, Ragupathy B, Arumugam S. A novel approach for neural networks based diagnosis and grading of stroke in tumor-affected brain MRIs. NETWORK (BRISTOL, ENGLAND) 2023; 34:190-220. [PMID: 37352128 DOI: 10.1080/0954898x.2023.2225601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/28/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023]
Abstract
Recognition and diagnosis of stroke from magnetic resonance Image (MRIs) are significant for medical procedures in therapeutic standards. The primary goal of this scheme is the discovery of stroke in tumour locale in brain tissues influenced image. The probability of stroke is categorized on brain tumour influenced images into mild, moderate, or serious cases. The mild and moderate phases of stroke are recognized as "Ahead of schedule" findings and serious cases are distinguished as "Advance" determination. The proposed Glioblastoma brain tumour recognition strategy used the Multifaceted Brain Tumour Image Segmentation test open-access dataset for evaluating the presentation. The brain images are classified utilizing the Deep Neural Networks classification algorithm as normal and abnormal images. The tumour region is segmented from the identified set of abnormal images using the normalized graph cut algorithm. The stroke likelihood is identified using the Deep Neural Networks by analysing the proximity of tumour section in brain matters. The proposed stroke analysis framework accurately groups 10 images as "Right on time" stroke probability images and accomplishes 90% order rate. The proposed stroke prediction framework effectively characterizes images as "Advance" stroke probability images and accomplishes 90% characterization rate.
Collapse
Affiliation(s)
| | - Sivakumar Paulraj
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
| | - Nagendra Prabhu Selvaraj
- Department of Computational Intelligence, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Balakumaresan Ragupathy
- Department of Electronics and Communication Engineering, PSNA College of Engineering and Technology, Dindigul, Tamil Nadu, India
| | - Selvapandian Arumugam
- Department of Electronics and Communication Engineering, PSNA College of Engineering and Technology, Dindigul, Tamil Nadu, India
| |
Collapse
|
6
|
Ranjbarzadeh R, Caputo A, Tirkolaee EB, Jafarzadeh Ghoushchi S, Bendechache M. Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools. Comput Biol Med 2023; 152:106405. [PMID: 36512875 DOI: 10.1016/j.compbiomed.2022.106405] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/06/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Brain cancer is a destructive and life-threatening disease that imposes immense negative effects on patients' lives. Therefore, the detection of brain tumors at an early stage improves the impact of treatments and increases the patients survival rates. However, detecting brain tumors in their initial stages is a demanding task and an unmet need. METHODS The present study presents a comprehensive review of the recent Artificial Intelligence (AI) methods of diagnosing brain tumors using MRI images. These AI techniques can be divided into Supervised, Unsupervised, and Deep Learning (DL) methods. RESULTS Diagnosing and segmenting brain tumors usually begin with Magnetic Resonance Imaging (MRI) on the brain since MRI is a noninvasive imaging technique. Another existing challenge is that the growth of technology is faster than the rate of increase in the number of medical staff who can employ these technologies. It has resulted in an increased risk of diagnostic misinterpretation. Therefore, developing robust automated brain tumor detection techniques has been studied widely over the past years. CONCLUSION The current review provides an analysis of the performance of modern methods in this area. Moreover, various image segmentation methods in addition to the recent efforts of researchers are summarized. Finally, the paper discusses open questions and suggests directions for future research.
Collapse
Affiliation(s)
- Ramin Ranjbarzadeh
- School of Computing, Faculty of Engineering and Computing, Dublin City University, Ireland.
| | - Annalina Caputo
- School of Computing, Faculty of Engineering and Computing, Dublin City University, Ireland.
| | | | | | - Malika Bendechache
- Lero & ADAPT Research Centres, School of Computer Science, University of Galway, Ireland.
| |
Collapse
|
7
|
Taher F, Shoaib MR, Emara HM, Abdelwahab KM, Abd El-Samie FE, Haweel MT. Efficient framework for brain tumor detection using different deep learning techniques. Front Public Health 2022; 10:959667. [PMID: 36530682 PMCID: PMC9752904 DOI: 10.3389/fpubh.2022.959667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
The brain tumor is an urgent malignancy caused by unregulated cell division. Tumors are classified using a biopsy, which is normally performed after the final brain surgery. Deep learning technology advancements have assisted the health professionals in medical imaging for the medical diagnosis of several symptoms. In this paper, transfer-learning-based models in addition to a Convolutional Neural Network (CNN) called BRAIN-TUMOR-net trained from scratch are introduced to classify brain magnetic resonance images into tumor or normal cases. A comparison between the pre-trained InceptionResNetv2, Inceptionv3, and ResNet50 models and the proposed BRAIN-TUMOR-net is introduced. The performance of the proposed model is tested on three publicly available Magnetic Resonance Imaging (MRI) datasets. The simulation results show that the BRAIN-TUMOR-net achieves the highest accuracy compared to other models. It achieves 100%, 97%, and 84.78% accuracy levels for three different MRI datasets. In addition, the k-fold cross-validation technique is used to allow robust classification. Moreover, three different unsupervised clustering techniques are utilized for segmentation.
Collapse
Affiliation(s)
- Fatma Taher
- College of Technological Innovative, Zayed University, Abu Dhabi, United Arab Emirates
| | - Mohamed R. Shoaib
- Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
| | - Heba M. Emara
- Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt,*Correspondence: Heba M. Emara
| | | | - Fathi E. Abd El-Samie
- Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt,Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammad T. Haweel
- Department of Electrical Engineering, Shaqra University, Shaqraa, Saudi Arabia
| |
Collapse
|
8
|
Popat M, Patel S. Research perspective and review towards brain tumour segmentation and classification using different image modalities. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2022. [DOI: 10.1080/21681163.2022.2124546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mayuri Popat
- U & P.U. Patel Department of Computer Engineering, Chandubhai S Patel Institute of Technology (CSPIT), Charotar University of Science and Technology (CHARUSAT), Gujarat, India
| | - Sanskruti Patel
- Smt. Chandaben Mohanbhai Patel Institute of Computer Applications (CMPICA), Charotar University of Science and Technology (CHARUSAT), Gujarat, India
| |
Collapse
|
9
|
Thawkar S. Feature selection and classification in mammography using hybrid crow search algorithm with Harris hawks optimization. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
A biologically-inspired hybrid deep learning approach for brain tumor classification from magnetic resonance imaging using improved gabor wavelet transform and Elmann-BiLSTM network. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Kalpana R, Bennet MA, Rahmani AW. Metaheuristic Optimization-Driven Novel Deep Learning Approach for Brain Tumor Segmentation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2980691. [PMID: 36033583 PMCID: PMC9410780 DOI: 10.1155/2022/2980691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 01/10/2023]
Abstract
Brain tumor has the foremost distinguished etiology of high morality. Neoplasm, a categorization of brain tumors, is very operative in distinguishing and determining the tumor's exact location in the brain. Magnetic resonance imaging (MRI) is an efficient noninvasive technique for the anatomical examination of brain tumors. Growth tissues have a distinguishable look in MRI pictures in order that they are unit-wide used for brain tumor feature extraction. The existing research algorithms for brain tumors have some limitations such as different qualities, low sensitivity, and diagnosing the tumor at its stages. In this particular piece of research, an innovative method of optimization known as the procedure for lightning attachment algorithm (PLA) is used, and for the purpose of classification, a CNN model known as DenseNet-169 is applied. PLA was used in order to optimize the growth, and a network model known as the DenseNet-169 model was utilized in order to extract the various growth-optimization choices. First, the MR images of the brain were preprocessed to remove any outliers. Next, the Dense Net-169 CNN model was used to extract network choices from the MR images. In addition, it is used to execute the function of a classifier in order to identify the growth as either an aberrant growth or a traditional growth. In addition, the publicly benchmarked datasets that are widely utilized have validated the algorithmic rule that was granted. The planned system demonstrates the satisfactory accuracy in getting ready to on the dataset and outperforms many of the notable current techniques.
Collapse
Affiliation(s)
- R. Kalpana
- Department of Electronics and Communication Engineering, VelTech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu 600062, India
| | - M. Anto Bennet
- Department of Electronics and Communication Engineering, VelTech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu 600062, India
| | | |
Collapse
|
12
|
Xie Y, Zaccagna F, Rundo L, Testa C, Agati R, Lodi R, Manners DN, Tonon C. Convolutional Neural Network Techniques for Brain Tumor Classification (from 2015 to 2022): Review, Challenges, and Future Perspectives. Diagnostics (Basel) 2022; 12:diagnostics12081850. [PMID: 36010200 PMCID: PMC9406354 DOI: 10.3390/diagnostics12081850] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 12/21/2022] Open
Abstract
Convolutional neural networks (CNNs) constitute a widely used deep learning approach that has frequently been applied to the problem of brain tumor diagnosis. Such techniques still face some critical challenges in moving towards clinic application. The main objective of this work is to present a comprehensive review of studies using CNN architectures to classify brain tumors using MR images with the aim of identifying useful strategies for and possible impediments in the development of this technology. Relevant articles were identified using a predefined, systematic procedure. For each article, data were extracted regarding training data, target problems, the network architecture, validation methods, and the reported quantitative performance criteria. The clinical relevance of the studies was then evaluated to identify limitations by considering the merits of convolutional neural networks and the remaining challenges that need to be solved to promote the clinical application and development of CNN algorithms. Finally, possible directions for future research are discussed for researchers in the biomedical and machine learning communities. A total of 83 studies were identified and reviewed. They differed in terms of the precise classification problem targeted and the strategies used to construct and train the chosen CNN. Consequently, the reported performance varied widely, with accuracies of 91.63–100% in differentiating meningiomas, gliomas, and pituitary tumors (26 articles) and of 60.0–99.46% in distinguishing low-grade from high-grade gliomas (13 articles). The review provides a survey of the state of the art in CNN-based deep learning methods for brain tumor classification. Many networks demonstrated good performance, and it is not evident that any specific methodological choice greatly outperforms the alternatives, especially given the inconsistencies in the reporting of validation methods, performance metrics, and training data encountered. Few studies have focused on clinical usability.
Collapse
Affiliation(s)
- Yuting Xie
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
| | - Fulvio Zaccagna
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| | - Leonardo Rundo
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, 84084 Fisciano, Italy;
| | - Claudia Testa
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
- Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy
| | - Raffaele Agati
- Programma Neuroradiologia con Tecniche ad elevata complessità, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy
| | - David Neil Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
- Correspondence:
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| |
Collapse
|
13
|
Assessment of CT for the categorization of hemorrhagic stroke (HS) and cerebral amyloid angiopathy hemorrhage (CAAH): A review. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Ghasemi M, Kelarestaghi M, Eshghi F, Sharifi A. D3FC: deep feature-extractor discriminative dictionary-learning fuzzy classifier for medical imaging. APPL INTELL 2022. [DOI: 10.1007/s10489-021-02781-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Sasank V, Venkateswarlu S. An automatic tumour growth prediction based segmentation using full resolution convolutional network for brain tumour. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Zhang Y, Lu Y, Chen W, Chang Y, Gu H, Yu B. MSMANet: A multi-scale mesh aggregation network for brain tumor segmentation. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Goswami M. Deep learning models for benign and malign ocular tumor growth estimation. Comput Med Imaging Graph 2021; 93:101986. [PMID: 34509705 DOI: 10.1016/j.compmedimag.2021.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/04/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022]
Abstract
Relatively abundant availability of medical imaging data has provided significant support in the development and testing of Neural Network based image processing methods. Clinicians often face issues in selecting suitable image processing algorithm for medical imaging data. A strategy for the selection of a proper model is presented here. The training data set comprises optical coherence tomography (OCT) and angiography (OCT-A) images of 50 mice eyes with more than 100 days follow-up. The data contains images from treated and untreated mouse eyes. Four deep learning variants are tested for automatic (a) differentiation of tumor region with healthy retinal layer and (b) segmentation of 3D ocular tumor volumes. Exhaustive sensitivity analysis of deep learning models is performed with respect to the number of training and testing images using eight performance indices to study accuracy, reliability/reproducibility, and speed. U-net with UVgg16 is best for malign tumor data set with treatment (having considerable variation) and U-net with Inception backbone for benign tumor data (with minor variation). Loss value and root mean square error (R.M.S.E.) are found most and least sensitive performance indices, respectively. The performance (via indices) is found to be exponentially improving regarding a number of training images. The segmented OCT-Angiography data shows that neovascularization drives the tumor volume. Image analysis shows that photodynamic imaging-assisted tumor treatment protocol is transforming an aggressively growing tumor into a cyst. An empirical expression is obtained to help medical professionals choose a particular model given the number of images and types of characteristics. We recommend that the presented exercise should be taken as standard practice before employing a particular deep learning model for biomedical image analysis.
Collapse
Affiliation(s)
- Mayank Goswami
- Divyadrishti Imaging Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee, India.
| |
Collapse
|
18
|
Gryska E, Schneiderman J, Björkman-Burtscher I, Heckemann RA. Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review. BMJ Open 2021; 11:e042660. [PMID: 33514580 PMCID: PMC7849889 DOI: 10.1136/bmjopen-2020-042660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Medical image analysis practices face challenges that can potentially be addressed with algorithm-based segmentation tools. In this study, we map the field of automatic MR brain lesion segmentation to understand the clinical applicability of prevalent methods and study designs, as well as challenges and limitations in the field. DESIGN Scoping review. SETTING Three databases (PubMed, IEEE Xplore and Scopus) were searched with tailored queries. Studies were included based on predefined criteria. Emerging themes during consecutive title, abstract, methods and whole-text screening were identified. The full-text analysis focused on materials, preprocessing, performance evaluation and comparison. RESULTS Out of 2990 unique articles identified through the search, 441 articles met the eligibility criteria, with an estimated growth rate of 10% per year. We present a general overview and trends in the field with regard to publication sources, segmentation principles used and types of lesions. Algorithms are predominantly evaluated by measuring the agreement of segmentation results with a trusted reference. Few articles describe measures of clinical validity. CONCLUSIONS The observed reporting practices leave room for improvement with a view to studying replication, method comparison and clinical applicability. To promote this improvement, we propose a list of recommendations for future studies in the field.
Collapse
Affiliation(s)
- Emilia Gryska
- Medical Radiation Sciences, Goteborgs universitet Institutionen for kliniska vetenskaper, Goteborg, Sweden
| | - Justin Schneiderman
- Sektionen för klinisk neurovetenskap, Goteborgs Universitet Institutionen for Neurovetenskap och fysiologi, Goteborg, Sweden
| | | | - Rolf A Heckemann
- Medical Radiation Sciences, Goteborgs universitet Institutionen for kliniska vetenskaper, Goteborg, Sweden
| |
Collapse
|
19
|
Kumar S, Mankame DP. Optimization driven Deep Convolution Neural Network for brain tumor classification. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.05.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Devi S, Sahoo MN, Bakshi S. A novel privacy-supporting 2-class classification technique for brain MRI images. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Singh M, Venkatesh V, Verma A, Sharma N. Segmentation of MRI data using multi-objective antlion based improved fuzzy c-means. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Intent based recognition of walking and ramp activities for amputee using sEMG based lower limb prostheses. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
FDSR: A new fuzzy discriminative sparse representation method for medical image classification. Artif Intell Med 2020; 106:101876. [PMID: 32593393 DOI: 10.1016/j.artmed.2020.101876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/02/2020] [Indexed: 11/22/2022]
Abstract
Recent developments in medical image analysis techniques make them essential tools in medical diagnosis. Medical imaging is always involved with different kinds of uncertainties. Managing these uncertainties has motivated extensive research on medical image classification methods, particularly for the past decade. Despite being a powerful classification tool, the sparse representation suffers from the lack of sufficient discrimination and robustness, which are required to manage the uncertainty and noisiness in medical image classification issues. It is tried to overcome this deficiency by introducing a new fuzzy discriminative robust sparse representation classifier, which benefits from the fuzzy terms in its optimization function of the dictionary learning process. In this work, we present a new medical image classification approach, fuzzy discriminative sparse representation (FDSR). The proposed fuzzy terms increase the inter-class representation difference and the intra-class representation similarity. Also, an adaptive fuzzy dictionary learning approach is used to learn dictionary atoms. FDSR is applied on Magnetic Resonance Images (MRI) from three medical image databases. The comprehensive experimental results clearly show that our approach outperforms its series of rival techniques in terms of accuracy, sensitivity, specificity, and convergence speed.
Collapse
|
24
|
KANSE SHILPASAMEER, YADAV DM. HG-SVNN: HARMONIC GENETIC-BASED SUPPORT VECTOR NEURAL NETWORK CLASSIFIER FOR THE GLAUCOMA DETECTION. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519419500659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glaucoma has emerged as the one of the leading causes of blindness. Even though the diagnosis of this disease has not yet been found, the early detection can cure the glaucoma disease. Various works presented for the glaucoma detection have many disadvantages such as increased run time, complex architecture, etc., during the real-time implementations. This work introduces the glaucoma detection system based on the proposed harmonic genetic-based support vector neural network (HG-SVNN) classifier. The proposed system detects glaucoma in the database through four major steps, (1) pre-processing, (2) proposed hybrid feature extraction, (3) segmentation and (4) classification through the proposed HG-SVNN classifier. The proposed model uses both the statistical and the vessel features from the segmented and the pre-processed images to construct the feature vector. The proposed HG-SVNN classifier uses both the harmonic operator and the genetic algorithm (GA) for the neural network training. From the simulation results, it is evident that the proposed glaucoma detection system has better performance than the existing works with the values of 0.945, 0.9, 0.9333 and 0.86667 for the segmentation accuracy, accuracy, sensitivity and specificity metric.
Collapse
Affiliation(s)
| | - D. M. YADAV
- Academic Dean G. H. Raisoni College of Engineering and Management, Wagholi, Pune, Maharashtra 412207, India
| |
Collapse
|
25
|
Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.01.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Extracting tumor in MR brain and breast image with Kapur’s entropy based Cuckoo Search Optimization and morphological reconstruction filters. Biocybern Biomed Eng 2018. [DOI: 10.1016/j.bbe.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|