1
|
Ghasad PP, Vegivada JVS, Kamble VM, Bhurane AA, Santosh N, Sharma M, Tan RS, Rajendra Acharya U. A systematic review of automated prediction of sudden cardiac death using ECG signals. Physiol Meas 2025; 13:01TR01. [PMID: 39657316 DOI: 10.1088/1361-6579/ad9ce5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Background. Sudden cardiac death (SCD) stands as a life-threatening cardiac event capable of swiftly claiming lives. It ranks prominently among the leading causes of global mortality, contributing to approximately 10% of deaths worldwide. The timely anticipation of SCD holds the promise of immediate life-saving interventions, such as cardiopulmonary resuscitation. However, recent strides in the realms of deep learning (DL), machine learning (ML), and artificial intelligence have ushered in fresh opportunities for the automation of SCD prediction using physiological signals. Researchers have devised numerous models to automatically predict SCD using a combination of diverse feature extraction techniques and classifiers. Methods: We conducted a thorough review of research publications ranging from 2011 to 2023, with a specific focus on the automated prediction of SCD. Traditionally, specialists utilize molecular biomarkers, symptoms, and 12-lead ECG recordings for SCD prediction. However, continuous patient monitoring by experts is impractical, and only a fraction of patients seeks help after experiencing symptoms. However, over the past two decades, ML techniques have emerged and evolved for this purpose. Importantly, since 2021, the studies we have scrutinized delve into a diverse array of ML and DL algorithms, encompassing K-nearest neighbors, support vector machines, decision trees, random forest, Naive Bayes, and convolutional neural networks as classifiers.Results. This literature review presents a comprehensive analysis of ML and DL models employed in predicting SCD. The analysis provided valuable information on the fundamental structure of cardiac fatalities, extracting relevant characteristics from electrocardiogram (ECG) and heart rate variability (HRV) signals, using databases, and evaluating classifier performance. The review offers a succinct yet thorough examination of automated SCD prediction methodologies, emphasizing current constraints and underscoring the necessity for further advancements. It serves as a valuable resource, providing valuable insights and outlining potential research directions for aspiring scholars in the domain of SCD prediction.Conclusions. In recent years, researchers have made substantial strides in the prediction of SCD by leveraging openly accessible databases such as the MIT-BIH SCD Holter and Normal Sinus Rhythm, which contains extensive 24 h recordings of SCD patients. These sophisticated methodologies have previously demonstrated the potential to achieve remarkable accuracy, reaching levels as high as 97%, and can forecast SCD events with a lead time of 30-70 min. Despite these promising outcomes, the quest for even greater accuracy and reliability persists. ML and DL methodologies have shown great promise, their performance is intrinsically linked to the volume of training data available. Most predictive models rely on small-scale databases, raising concerns about their applicability in real-world scenarios. Furthermore, these models predominantly utilize ECG and HRV signals, often overlooking the potential contributions of other physiological signals. Developing real-time, clinically applicable models also represents a critical avenue for further exploration in this field.
Collapse
Affiliation(s)
- Preeti P Ghasad
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Jagath V S Vegivada
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Vipin M Kamble
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Ankit A Bhurane
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Nikhil Santosh
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, Gujarat, India
| | - Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, Gujarat, India
| | - Ru-San Tan
- National Heart Centre Singapore, Duke-NUS Medical School, Singapore, Singapore
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
- Centre for Health Research, University of Southern Queensland, Springfield, Australia
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
2
|
Kolk MZH, Deb B, Ruipérez-Campillo S, Bhatia NK, Clopton P, Wilde AAM, Narayan SM, Knops RE, Tjong FVY. Machine learning of electrophysiological signals for the prediction of ventricular arrhythmias: systematic review and examination of heterogeneity between studies. EBioMedicine 2023; 89:104462. [PMID: 36773349 PMCID: PMC9945642 DOI: 10.1016/j.ebiom.2023.104462] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Ventricular arrhythmia (VA) precipitating sudden cardiac arrest (SCD) is among the most frequent causes of death and pose a high burden on public health systems worldwide. The increasing availability of electrophysiological signals collected through conventional methods (e.g. electrocardiography (ECG)) and digital health technologies (e.g. wearable devices) in combination with novel predictive analytics using machine learning (ML) and deep learning (DL) hold potential for personalised predictions of arrhythmic events. METHODS This systematic review and exploratory meta-analysis assesses the state-of-the-art of ML/DL models of electrophysiological signals for personalised prediction of malignant VA or SCD, and studies potential causes of bias (PROSPERO, reference: CRD42021283464). Five electronic databases were searched to identify eligible studies. Pooled estimates of the diagnostic odds ratio (DOR) and summary area under the curve (AUROC) were calculated. Meta-analyses were performed separately for studies using publicly available, ad-hoc datasets, versus targeted clinical data acquisition. Studies were scored on risk of bias by the PROBAST tool. FINDINGS 2194 studies were identified of which 46 were included in the systematic review and 32 in the meta-analysis. Pooling of individual models demonstrated a summary AUROC of 0.856 (95% CI 0.755-0.909) for short-term (time-to-event up to 72 h) prediction and AUROC of 0.876 (95% CI 0.642-0.980) for long-term prediction (time-to-event up to years). While models developed on ad-hoc sets had higher pooled performance (AUROC 0.919, 95% CI 0.867-0.952), they had a high risk of bias related to the re-use and overlap of small ad-hoc datasets, choices of ML tool and a lack of external model validation. INTERPRETATION ML and DL models appear to accurately predict malignant VA and SCD. However, wide heterogeneity between studies, in part due to small ad-hoc datasets and choice of ML model, may reduce the ability to generalise and should be addressed in future studies. FUNDING This publication is part of the project DEEP RISK ICD (with project number 452019308) of the research programme Rubicon which is (partly) financed by the Dutch Research Council (NWO). This research is partly funded by the Amsterdam Cardiovascular Sciences (personal grant F.V.Y.T).
Collapse
Affiliation(s)
- Maarten Z H Kolk
- Amsterdam UMC Location University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart failure & arrhythmias, Amsterdam, The Netherlands
| | - Brototo Deb
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | | | - Neil K Bhatia
- Department of Cardiology, Emory University, Atlanta, GA, USA
| | - Paul Clopton
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Arthur A M Wilde
- Amsterdam UMC Location University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart failure & arrhythmias, Amsterdam, The Netherlands
| | - Sanjiv M Narayan
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Reinoud E Knops
- Amsterdam UMC Location University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart failure & arrhythmias, Amsterdam, The Netherlands
| | - Fleur V Y Tjong
- Amsterdam UMC Location University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart failure & arrhythmias, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Suri JS, Bhagawati M, Paul S, Protogerou AD, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Saxena S, Faa G, Laird JR, Johri AM, Kalra MK, Paraskevas KI, Saba L. A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review. Diagnostics (Basel) 2022; 12:722. [PMID: 35328275 PMCID: PMC8947682 DOI: 10.3390/diagnostics12030722] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/16/2022] Open
Abstract
Background and Motivation: Cardiovascular disease (CVD) causes the highest mortality globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conventional methods have shown poor performance compared to more recent and fast-evolving Artificial Intelligence (AI) methods. The proposed study reviews the three most recent paradigms for CVD risk assessment, namely multiclass, multi-label, and ensemble-based methods in (i) office-based and (ii) stress-test laboratories. Methods: A total of 265 CVD-based studies were selected using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) model. Due to its popularity and recent development, the study analyzed the above three paradigms using machine learning (ML) frameworks. We review comprehensively these three methods using attributes, such as architecture, applications, pro-and-cons, scientific validation, clinical evaluation, and AI risk-of-bias (RoB) in the CVD framework. These ML techniques were then extended under mobile and cloud-based infrastructure. Findings: Most popular biomarkers used were office-based, laboratory-based, image-based phenotypes, and medication usage. Surrogate carotid scanning for coronary artery risk prediction had shown promising results. Ground truth (GT) selection for AI-based training along with scientific and clinical validation is very important for CVD stratification to avoid RoB. It was observed that the most popular classification paradigm is multiclass followed by the ensemble, and multi-label. The use of deep learning techniques in CVD risk stratification is in a very early stage of development. Mobile and cloud-based AI technologies are more likely to be the future. Conclusions: AI-based methods for CVD risk assessment are most promising and successful. Choice of GT is most vital in AI-based models to prevent the RoB. The amalgamation of image-based strategies with conventional risk factors provides the highest stability when using the three CVD paradigms in non-cloud and cloud-based frameworks.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India; (M.B.); (S.P.)
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India; (M.B.); (S.P.)
| | - Athanasios D. Protogerou
- Research Unit Clinic, Laboratory of Pathophysiology, Department of Cardiovascular Prevention, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 11527 Athens, Greece;
| | - George D. Kitas
- Arthritis Research UK Centre for Epidemiology, Manchester University, Manchester 46962, UK;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110020, India;
| | - Zoltan Ruzsa
- Department of Internal Medicines, Invasive Cardiology Division, University of Szeged, 6720 Szeged, Hungary;
| | - Aditya M. Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhubaneswar 751003, India;
| | - Gavino Faa
- Department of Pathology, A.O.U., di Cagliari-Polo di Monserrato s.s., 09045 Cagliari, Italy;
| | - John R. Laird
- Cardiology Department, St. Helena Hospital, St. Helena, CA 94574, USA;
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Manudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, N. Iraklio, 14122 Athens, Greece;
| | - Luca Saba
- Department of Radiology, A.O.U., di Cagliari-Polo di Monserrato s.s., 09045 Cagliari, Italy;
| |
Collapse
|
4
|
Bidimensional and Tridimensional Poincaré Maps in Cardiology: A Multiclass Machine Learning Study. ELECTRONICS 2022. [DOI: 10.3390/electronics11030448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heart rate is a nonstationary signal and its variation may contain indicators of current disease or warnings about impending cardiac diseases. Hence, heart rate variation analysis has become a noninvasive tool to further study the activities of the autonomic nervous system. In this scenario, the Poincaré plot analysis has proven to be a valuable tool to support cardiac diseases diagnosis. The study’s aim is a preliminary exploration of the feasibility of machine learning to classify subjects belonging to five cardiac states (healthy, hypertension, myocardial infarction, congestive heart failure and heart transplanted) using ten unconventional quantitative parameters extracted from bidimensional and three-dimensional Poincaré maps. Knime Analytic Platform was used to implement several machine learning algorithms: Gradient Boosting, Adaptive Boosting, k-Nearest Neighbor and Naïve Bayes. Accuracy, sensitivity and specificity were computed to assess the performances of the predictive models using the leave-one-out cross-validation. The Synthetic Minority Oversampling technique was previously performed for data augmentation considering the small size of the dataset and the number of features. A feature importance, ranked on the basis of the Information Gain values, was computed. Preliminarily, a univariate statistical analysis was performed through one-way Kruskal Wallis plus post-hoc for all the features. Machine learning analysis achieved interesting results in terms of evaluation metrics, such as demonstrated by Adaptive Boosting and k-Nearest Neighbor (accuracies greater than 90%). Gradient Boosting and k-Nearest Neighbor reached even 100% score in sensitivity and specificity, respectively. The most important features according to information gain are in line with the results obtained from the statistical analysis confirming their predictive power. The study shows the proposed combination of unconventional features extracted from Poincaré maps and well-known machine learning algorithms represents a valuable approach to automatically classify patients with different cardiac diseases. Future investigations on enriched datasets will further confirm the potential application of this methodology in diagnostic.
Collapse
|
5
|
Haleem MS, Castaldo R, Pagliara SM, Petretta M, Salvatore M, Franzese M, Pecchia L. Time adaptive ECG driven cardiovascular disease detector. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Tang KJW, Ang CKE, Constantinides T, Rajinikanth V, Acharya UR, Cheong KH. Artificial Intelligence and Machine Learning in Emergency Medicine. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2020.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Detection of sudden cardiac death by a comparative study of heart rate variability in normal and abnormal heart conditions. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Saxena A, Ng EYK, Lim ST. Infrared (IR) thermography as a potential screening modality for carotid artery stenosis. Comput Biol Med 2019; 113:103419. [PMID: 31493579 DOI: 10.1016/j.compbiomed.2019.103419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 11/19/2022]
Abstract
In the present study, an infrared (IR) thermal camera was used to map the temperature of the target skin surface, and the resulting thermal image was evaluated for the presence of carotid artery stenosis (CAS). In the presence of stenosis in the carotid artery, abnormal temperature maps are expected to occur on the external skin surface, which could be captured and quantified using IR thermography. A Duplex Ultrasound (DUS) examination was used to establish the ground truth. In each patient, the background-subtracted thermal image, referred to as full thermal image, was used to extract novel parametric cold thermal feature images. From these images, statistical features, viz., correlation, energy, homogeneity, contrast, entropy, mean, standard deviation (SD), skewness, and kurtosis, were calculated and the two groups of patients (control and diseased: a total of 80 carotid artery samples) were classified. Both cut-off value- and support vector machine (SVM)-based binary classification models were tested. While the cut-off value classification model resulted in a moderate performance (70% accurate), SVM was found to have classified the patients with high accuracy (92% or higher). This preliminary study suggests the potential of IR thermography as a possible screening tool for CAS patients.
Collapse
Affiliation(s)
- Ashish Saxena
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - E Y K Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore.
| | - Soo Teik Lim
- Department of Cardiology, National Heart Center Singapore, 5 Hospital Dr, 169609, Singapore
| |
Collapse
|