1
|
Devi S, Sahoo MN, Bakshi S. Explainable Reverse Verification of Goodness of Classification of MRI Images by Clinical Experts. IEEE J Biomed Health Inform 2024; 28:3258-3268. [PMID: 37235461 DOI: 10.1109/jbhi.2023.3280184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Radiology offers a presumptive diagnosis. The etiology of radiological errors are prevalent, recurrent, and multi-factorial. The pseudo-diagnostic conclusions can arise from varying factors such as, poor technique, failures of visual perception, lack of knowledge, and misjudgments. This retrospective and interpretive errors can influence and alter the Ground Truth (GT) of Magnetic Resonance (MR) imaging which in turn result in faulty class labeling. Wrong class labels can lead to erroneous training and illogical classification outcomes for Computer Aided Diagnosis (CAD) systems. This work aims at verifying and authenticating the accuracy and exactness of the GT of biomedical datasets which are extensively used in binary classification frameworks. Generally such datasets are labeled by only one radiologist. Our article adheres a hypothetical approach to generate few faulty iterations. An iteration here considers simulation of faulty radiologist's perspective in MR image labeling. To achieve this, we try to simulate radiologists who are subjected to human error while taking decision regarding the class labels. In this context, we swap the class labels randomly and force them to be faulty. The experiments are carried out on some iterations (with varying number of brain images) randomly created from the brain MR datasets. The experiments are carried out on two benchmark datasets DS-75 and DS-160 collected from Harvard Medical School website and one larger input pool of self-collected dataset NITR-DHH. To validate our work, average classification parameter values of faulty iterations are compared with that of original dataset. It is presumed that, the presented approach provides a potential solution to verify the genuineness and reliability of the GT of the MR datasets. This approach can be utilized as a standard technique to validate the correctness of any biomedical dataset.
Collapse
|
2
|
Behera TK, Khan MA, Bakshi S. Brain MR Image Classification Using Superpixel-Based Deep Transfer Learning. IEEE J Biomed Health Inform 2024; 28:1218-1227. [PMID: 36269915 DOI: 10.1109/jbhi.2022.3216270] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nowadays, brain MR (Magnetic Resonance) images are widely used by clinicians to examine the brain's anatomy to look into various pathological conditions like cerebrovascular incidents and neuro-degenerative diseases. Generally, these diseases can be identified with the MR images as "normal" and "abnormal" brains in a two-class classification problem or as disease-specific classes in a multi-class problem. This article presents an ensemble transfer learning-inspired deep architecture that uses the simple linear iterative clustering (SLIC)-based superpixel algorithm along with convolutional neural network (CNN) to classify the MR images as normal or abnormal. Superpixel algorithm segments the input MR images into clusters of regions defined by similarity measures using perceptual feature space. These superpixel images are beneficial as they can provide a compact and meaningful role in computationally demanding applications. The superpixel images are then fed to the deep convolutional neural network (CNN) to classify the images. Three brain MR image datasets, NITR-DHH, DS-75, and DS-160, are used to conduct the experimentation. Through the use of deep transfer learning, the model achieves performance accuracy of 88.15% (NITR-DHH), 98.15% (DS-160), and 98.33% (DS-75) even with the small-scale medical image dataset. The experimentally obtained results demonstrate that the proposed method is promising and efficient for clinical applications for diagnosing different brain diseases via MR images.
Collapse
|
3
|
Hu W, Li X, Li C, Li R, Jiang T, Sun H, Huang X, Grzegorzek M, Li X. A state-of-the-art survey of artificial neural networks for Whole-slide Image analysis: From popular Convolutional Neural Networks to potential visual transformers. Comput Biol Med 2023; 161:107034. [PMID: 37230019 DOI: 10.1016/j.compbiomed.2023.107034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
In recent years, with the advancement of computer-aided diagnosis (CAD) technology and whole slide image (WSI), histopathological WSI has gradually played a crucial aspect in the diagnosis and analysis of diseases. To increase the objectivity and accuracy of pathologists' work, artificial neural network (ANN) methods have been generally needed in the segmentation, classification, and detection of histopathological WSI. However, the existing review papers only focus on equipment hardware, development status and trends, and do not summarize the art neural network used for full-slide image analysis in detail. In this paper, WSI analysis methods based on ANN are reviewed. Firstly, the development status of WSI and ANN methods is introduced. Secondly, we summarize the common ANN methods. Next, we discuss publicly available WSI datasets and evaluation metrics. These ANN architectures for WSI processing are divided into classical neural networks and deep neural networks (DNNs) and then analyzed. Finally, the application prospect of the analytical method in this field is discussed. The important potential method is Visual Transformers.
Collapse
Affiliation(s)
- Weiming Hu
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Xintong Li
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
| | - Rui Li
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Tao Jiang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; International Joint Institute of Robotics and Intelligent Systems, Chengdu University of Information Technology, Chengdu, China
| | - Hongzan Sun
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinyu Huang
- Institute for Medical Informatics, University of Luebeck, Luebeck, Germany
| | - Marcin Grzegorzek
- Institute for Medical Informatics, University of Luebeck, Luebeck, Germany; Department of Knowledge Engineering, University of Economics in Katowice, Katowice, Poland
| | - Xiaoyan Li
- Cancer Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Devi S, Bakshi S, Sahoo MN. Effect of situational and instrumental distortions on the classification of brain MR images. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Assessment of CT for the categorization of hemorrhagic stroke (HS) and cerebral amyloid angiopathy hemorrhage (CAAH): A review. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches. Artif Intell Rev 2022. [DOI: 10.1007/s10462-021-10121-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|