1
|
Biet M, Dansereau M, Sarret P, Dumaine R. The neuronal potassium current I A is a potential target for pain during chronic inflammation. Physiol Rep 2021; 9:e14975. [PMID: 34405579 PMCID: PMC8371350 DOI: 10.14814/phy2.14975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
Voltage-gated ion channels play a key role in the action potential (AP) initiation and its propagation in sensory neurons. Modulation of their activity during chronic inflammation creates a persistent pain state. In this study, we sought to determine how peripheral inflammation caused by complete Freund's adjuvant (CFA) alters the fast sodium (INa ), L-type calcium (ICaL ), and potassium (IK ) currents in primary afferent fibers to increase nociception. In our model, intraplantar administration of CFA induced mechanical allodynia and thermal hyperalgesia at day 14 post-injection. Using whole-cell patch-clamp recording in dissociated small (C), medium (Aδ), and large-sized (Aβ) rat dorsal root ganglion (DRG) neurons, we found that CFA prolonged the AP duration and increased the amplitude of the tetrodotoxin-resistant (TTX-r) INa in Aβ fibers. In addition, CFA accelerated the recovery of INa from inactivation in C and Aδ nociceptive fibers but enhanced the late sodium current (INaL ) only in Aδ and Aβ neurons. Inflammation similarly reduced the amplitude of ICaL in each neuronal cell type. Fourteen days after injection, CFA reduced both components of IK (IKdr and IA ) in Aδ fibers. We also found that IA was significantly larger in C and Aδ neurons in normal conditions and during chronic inflammation. Our data, therefore, suggest that targeting the transient potassium current IA represents an efficient way to shift the balance toward antinociception during inflammation, since its activation will selectively decrease the AP duration in nociceptive fibers. Altogether, our data indicate that complex interactions between IK , INa , and ICaL reduce pain threshold by concomitantly enhancing the activity of nociceptive neurons and reducing the inhibitory action of Aβ fibers during chronic inflammation.
Collapse
MESH Headings
- Action Potentials
- Animals
- Calcium Channels, L-Type/metabolism
- Cells, Cultured
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/physiology
- Male
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/physiology
- Nociception
- Nociceptive Pain/metabolism
- Nociceptive Pain/physiopathology
- Potassium Channels, Voltage-Gated/metabolism
- Rats
- Rats, Sprague-Dawley
- Sodium Channel Blockers/pharmacology
- Sodium Channels/metabolism
- Tetrodotoxin/pharmacology
Collapse
Affiliation(s)
- Michael Biet
- Département de Pharmacologie et PhysiologieInstitut de pharmacologie de SherbrookeCentre de Recherche du Centre Hospitalier Universitaire de SherbrookeFaculté de médecine et des Sciences de la SantéUniversité de SherbrookeSherbrookeQuébecCanada
| | - Marc‐André Dansereau
- Département de Pharmacologie et PhysiologieInstitut de pharmacologie de SherbrookeCentre de Recherche du Centre Hospitalier Universitaire de SherbrookeFaculté de médecine et des Sciences de la SantéUniversité de SherbrookeSherbrookeQuébecCanada
| | - Philippe Sarret
- Département de Pharmacologie et PhysiologieInstitut de pharmacologie de SherbrookeCentre de Recherche du Centre Hospitalier Universitaire de SherbrookeFaculté de médecine et des Sciences de la SantéUniversité de SherbrookeSherbrookeQuébecCanada
| | - Robert Dumaine
- Département de Pharmacologie et PhysiologieInstitut de pharmacologie de SherbrookeCentre de Recherche du Centre Hospitalier Universitaire de SherbrookeFaculté de médecine et des Sciences de la SantéUniversité de SherbrookeSherbrookeQuébecCanada
| |
Collapse
|
2
|
Qu L, Caterina MJ. Enhanced excitability and suppression of A-type K(+) currents in joint sensory neurons in a murine model of antigen-induced arthritis. Sci Rep 2016; 6:28899. [PMID: 27363579 PMCID: PMC4929491 DOI: 10.1038/srep28899] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
Pain is a dominant symptom of rheumatoid arthritis (RA) and its adequate treatment represents a major unmet need. However, the cellular mechanisms that drive arthritis pain are largely unexplored. Here, we examined the changes in the activity of joint sensory neurons and the associated ionic mechanisms using an animal model of antigen-induced arthritis (AIA). Methylated-bovine serum albumin (mBSA), but not vehicle challenge, in the ankle of previously immunized mice produced time-dependent symptoms of arthritis, including joint inflammation, primary mechanical hyperalgesia in the ipsilateral ankle, and secondary mechanical and heat hyperalgesia in the ipsilateral hindpaw. In vivo electrophysiological recordings revealed that Dil-labeled joint sensory neurons in AIA mice exhibited a greater incidence of spontaneous activity, mechanically evoked after-discharges, and/or increased responses to mechanical stimulation of their receptive fields, compared to control animals. Whole-cell recordings in vitro showed that AIA enhanced the excitability of joint sensory neurons. These signs of neuronal hyperexcitability were associated with a significant reduction in the density of A-type K+ currents. Thus, our data suggest that neuronal hyperexcitability, brought about in part by reduced A-type K+ currents, may contribute to pain-related behaviors that accompany antigen-induced arthritis and/or other antigen-mediated diseases.
Collapse
Affiliation(s)
- Lintao Qu
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michael J Caterina
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
3
|
Kimura M, Sakai A, Sakamoto A, Suzuki H. Glial cell line-derived neurotrophic factor-mediated enhancement of noradrenergic descending inhibition in the locus coeruleus exerts prolonged analgesia in neuropathic pain. Br J Pharmacol 2015; 172:2469-78. [PMID: 25572945 DOI: 10.1111/bph.13073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/10/2014] [Accepted: 12/25/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The locus coeruleus (LC) is the principal nucleus containing the noradrenergic neurons and is a major endogenous source of pain modulation in the brain. Glial cell line-derived neurotrophic factor (GDNF), a well-established neurotrophic factor for noradrenergic neurons, is a major pain modulator in the spinal cord and primary sensory neurons. However, it is unknown whether GDNF is involved in pain modulation in the LC. EXPERIMENTAL APPROACH Rats with chronic constriction injury (CCI) of the left sciatic nerve were used as a model of neuropathic pain. GDNF was injected into the left LC of rats with CCI for 3 consecutive days and changes in mechanical allodynia and thermal hyperalgesia were assessed. The α2 -adrenoceptor antagonist yohimbine was injected intrathecally to assess the involvement of descending inhibition in GDNF-mediated analgesia. The MEK inhibitor U0126 was used to investigate whether the ERK signalling pathway plays a role in the analgesic effects of GDNF. KEY RESULTS Both mechanical allodynia and thermal hyperalgesia were attenuated 24 h after the first GDNF injection. GDNF increased the noradrenaline content in the dorsal spinal cord. The analgesic effects continued for at least 3 days after the last injection. Yohimbine abolished these effects of GDNF. The analgesic effects of GDNF were partly, but significantly, inhibited by prior injection of U0126 into the LC. CONCLUSIONS AND IMPLICATIONS GDNF injection into the LC exerts prolonged analgesic effects on neuropathic pain in rats by enhancing descending noradrenergic inhibition.
Collapse
Affiliation(s)
- M Kimura
- Department of Anesthesiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
4
|
Zhang YJ, Lu XW, Song N, Kou L, Wu MK, Liu F, Wang H, Shen JF. Chlorogenic acid alters the voltage-gated potassium channel currents of trigeminal ganglion neurons. Int J Oral Sci 2014; 6:233-40. [PMID: 25394592 PMCID: PMC5153590 DOI: 10.1038/ijos.2014.58] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2014] [Indexed: 02/05/2023] Open
Abstract
Chlorogenic acid (5-caffeoylquinic acid, CGA) is a phenolic compound that is found ubiquitously in plants, fruits and vegetables and is formed via the esterification of caffeic acid and quinic acid. In addition to its notable biological functions against cardiovascular diseases, type-2 diabetes and inflammatory conditions, CGA was recently hypothesized to be an alternative for the treatment of neurological diseases such as Alzheimer's disease and neuropathic pain disorders. However, its mechanism of action is unclear. Voltage-gated potassium channel (Kv) is a crucial factor in the electro-physiological processes of sensory neurons. Kv has also been identified as a potential therapeutic target for inflammation and neuropathic pain disorders. In this study, we analysed the effects of CGA on the two main subtypes of Kv in trigeminal ganglion neurons, namely, the IK,A and IK,V channels. Trigeminal ganglion (TRG) neurons were acutely disassociated from the rat TRG, and two different doses of CGA (0.2 and 1 mmol⋅L−1) were applied to the cells. Whole-cell patch-clamp recordings were performed to observe alterations in the activation and inactivation properties of the IK,A and IK,V channels. The results demonstrated that 0.2 mmol⋅L−1 CGA decreased the peak current density of IK,A. Both 0.2 mmol⋅L−1 and 1 mmol⋅L−1 CGA also caused a significant reduction in the activation and inactivation thresholds of IK,A and IK,V. CGA exhibited a strong effect on the activation and inactivation velocities of IK,A and IK,V. These findings provide novel evidence explaining the biological effects of CGA, especially regarding its neurological effects.
Collapse
Affiliation(s)
- Yu-Jiao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Ning Song
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Kou
- Ningbo Dental Hospital, Ningbo, China
| | - Min-Ke Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
LPS-induced dental pulp inflammation increases expression of ionotropic purinergic receptors in rat trigeminal ganglion. Neuroreport 2014; 25:991-7. [DOI: 10.1097/wnr.0000000000000193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Shogen Y, Isomura ET, Kogo M. Evaluation of inferior alveolar nerve regeneration by bifocal distraction osteogenesis with retrograde transportation of horseradish peroxidase in dogs. PLoS One 2014; 9:e94365. [PMID: 24732938 PMCID: PMC3986082 DOI: 10.1371/journal.pone.0094365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/14/2014] [Indexed: 01/09/2023] Open
Abstract
Background Bifocal distraction osteogenesis has been shown to be a reliable method for reconstructing segmental mandibular defects. However, there are few reports regarding the occurrence of inferior alveolar nerve regeneration during the process of distraction. Previously, we reported inferior alveolar nerve regeneration after distraction, and evaluated the regenerated nerve using histological and electrophysiological methods. In the present study, we investigated axons regenerated by bifocal distraction osteogenesis using retrograde transportation of horseradish peroxidase in the mandibles of dogs to determine their type and function. Methods and Findings Using a bifocal distraction osteogenesis method, we produced a 10-mm mandibular defect, including a nerve defect, in 11 dogs and distracted using a transport disk at a rate of 1 mm/day. The regenerated inferior alveolar nerve was evaluated by retrograde transportation of HRP in all dogs at 3 and 6 months after the first operation. At 3 and 6 months, HRP-labeled neurons were observed in the trigeminal ganglion. The number of HRP-labeled neurons in each section increased, while the cell body diameter of HRP-labeled neurons was reduced over time. Conclusions We found that the inferior alveolar nerve after bifocal distraction osteogenesis successfully recovered until peripheral tissue began to function. Although our research is still at the stage of animal experiments, it is considered that it will be possible to apply this method in the future to humans who have the mandibular defects.
Collapse
Affiliation(s)
- Yosuke Shogen
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, Suita, Japan
| | - Emiko Tanaka Isomura
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, Suita, Japan
- Unit of Dentistry, Osaka University Hospital, Suita, Japan
- * E-mail:
| | - Mikihiko Kogo
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
7
|
Takeda M, Takahashi M, Matsumoto S. Inflammation enhanced brain-derived neurotrophic factor-induced suppression of the voltage-gated potassium currents in small-diameter trigeminal ganglion neurons projecting to the trigeminal nucleus interpolaris/caudalis transition zone. Neuroscience 2014; 261:223-31. [DOI: 10.1016/j.neuroscience.2013.12.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/12/2013] [Accepted: 12/20/2013] [Indexed: 12/30/2022]
|
8
|
Brain-derived neurotrophic factor enhances the excitability of small-diameter trigeminal ganglion neurons projecting to the trigeminal nucleus interpolaris/caudalis transition zone following masseter muscle inflammation. Mol Pain 2013; 9:49. [PMID: 24073832 PMCID: PMC3849633 DOI: 10.1186/1744-8069-9-49] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/24/2013] [Indexed: 12/29/2022] Open
Abstract
Background The trigeminal subnuclei interpolaris/caudalis transition zones (Vi/Vc) play an important role in orofacial deep pain, however, the role of primary afferent projections to the Vi/Vc remains to be determined. This study investigated the functional significance of hyperalgesia to the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (trkB) signaling system in trigeminal ganglion (TRG) neurons projecting to the Vi/Vc transition zone following masseter muscle (MM) inflammation. Results The escape threshold from mechanical stimulation applied to skin above the inflamed MM was significantly lower than in naïve rats. Fluorogold (FG) labeling was used to identify the TRG neurons innervating the MM, while microbeads (MB) were used to label neurons projecting to the Vi/Vc region. FG/MB-labeled TRG neurons were immunoreactive (IR) for BDNF and trkB. The mean number of BDNF/trkB-IR small/medium-diameter TRG neurons was significantly higher in inflamed rats than in naïve rats. In whole-cell current-clamp experiments, the majority of dissociated small-diameter TRG neurons showed a depolarization response to BDNF that was associated with spike discharge, and the concentration of BDNF that evoked a depolarizing response was significantly lower in the inflamed rats. In addition, the relative number of BDNF-induced spikes during current injection was significantly higher in inflamed rats. The BDNF-induced changes in TRG neuron excitability was abolished by tyrosine kinase inhibitor, K252a. Conclusion The present study provided evidence that BDNF enhances the excitability of the small-diameter TRG neurons projecting onto the Vi/Vc following MM inflammation. These findings suggest that ganglionic BDNF-trkB signaling is a therapeutic target for the treatment of trigeminal inflammatory hyperalgesia.
Collapse
|
9
|
Takeda M, Takahashi M, Hara N, Matsumoto S. Glial cell line-derived neurotrophic factor modulates the excitability of nociceptive trigeminal ganglion neurons via a paracrine mechanism following inflammation. Brain Behav Immun 2013; 28:100-7. [PMID: 23131757 DOI: 10.1016/j.bbi.2012.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 10/29/2012] [Indexed: 01/05/2023] Open
Abstract
Previous our report indicated that acute application of glial cell line-derived neurotrophic factor (GDNF) enhances the neuronal excitability of adult rat small-diameter trigeminal ganglion (TRG) neurons, which innervate the facial skin in the absence of neuropathic and inflammatory conditions. This study investigated whether under in vivo conditions, GDNF modulates the excitability of nociceptive Aδ-TRG neurons innervating the facial skin via a paracrine mechanism following inflammation. We used extracellular electrophysiological recording with multibarrel-electrodes in this study. Spontaneous Aδ-TRG neuronal activity was induced in control rats after iontophoretic application of GDNF into the trigeminal ganglia (TRGs). Noxious and non-noxious mechanical stimuli evoked Aδ-TRG neuronal firing rate were significantly increased by iontophoretic application of GDNF. The mean mechanical threshold of nociceptive TRG neurons was significantly decreased by GDNF application. The increased discharge frequency and decreased mechanical threshold induced by GDNF were antagonized by application of the protein tyrosine kinase inhibitor, K252b. The number of Aδ-TRG neurons with spontaneous firings and their firing rates in rats with inflammation induced by Complete Freund's Adjuvant were significantly higher than control rats. The firing rates of Aδ-TRG spontaneous neuronal activity were significantly decreased by iontophoretic application of K252b in inflamed rats. K252b also inhibited Aδ-TRG neuron activity evoked by mechanical stimulation in inflamed rats. These results suggest that in vivo GDNF enhances the excitability of nociceptive Aδ-TRG neurons via a paracrine mechanism within TRGs following inflammation. GDNF paracrine mechanism could be important as a therapeutic target for trigeminal inflammatory hyperalgesia.
Collapse
Affiliation(s)
- Mamoru Takeda
- Department of Physiology, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo 102-8159, Japan.
| | | | | | | |
Collapse
|
10
|
Ono K, Xu S, Hitomi S, Inenaga K. Comparison of the electrophysiological and immunohistochemical properties of acutely dissociated and 1-day cultured rat trigeminal ganglion neurons. Neurosci Lett 2012; 523:162-6. [DOI: 10.1016/j.neulet.2012.06.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/22/2012] [Accepted: 06/23/2012] [Indexed: 01/21/2023]
|
11
|
Hendrich J, Alvarez P, Chen X, Levine JD. GDNF induces mechanical hyperalgesia in muscle by reducing I(BK) in isolectin B4-positive nociceptors. Neuroscience 2012; 219:204-13. [PMID: 22704965 DOI: 10.1016/j.neuroscience.2012.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
We have assessed the mechanism underlying glial cell-derived neurotrophic factor (GDNF)-induced mechanical hyperalgesia in the gastrocnemius muscle, using patch clamp electrophysiology, in vivo electrophysiology and behavioral studies. Cultured isolectin B4-positive (IB4+) dorsal root ganglion neurons that innervated this muscle were held under current clamp; the majority developed an increase in action potential duration (a factor of increase of 2.29±0.24, compared to 1.13±0.17 in control, P<0.01) in response to GDNF (200 ng/ml) by 15 min after application. They also demonstrated a depolarization of resting membrane potential, but without significant changes in rheobase, action potential peak, or after-hyperpolarization. Large-conductance voltage- and calcium-activated potassium (BK) channels, which have recently been shown to play a role in the repolarization of IB4+ nociceptors, were inhibited under voltage clamp, as indicated by a significant reduction in the iberiotoxin-sensitive current. In vivo single-fiber recording from muscle afferents revealed that injection of iberiotoxin into their peripheral nociceptive field caused an increase in nociceptor firing in response to a 60s suprathreshold stimulus (an increase from 392.2±119.8 spikes to 596.1±170.8 spikes, P<0.05). This was observed in the absence of changes in the mechanical threshold. Finally, injection of iberiotoxin into the gastrocnemius muscle produced dose-dependent mechanical hyperalgesia. These data support the suggestion that GDNF induces nociceptor sensitization and mechanical hyperalgesia, at least in part, by inhibiting BK current in IB4+ nociceptors.
Collapse
Affiliation(s)
- J Hendrich
- Department of Oral and Maxillofacial Surgery, University of California at San Francisco, CA 94143-0440, USA
| | | | | | | |
Collapse
|
12
|
Abstract
We tested a hypothesis that the spinal plasticity induced within a few hours after nerve injury may produce changes in cortical activities and an initial phase of neuropathic pain. Somatosensory cortical responses elicited by vibratory stimulation were visualized by transcranial flavoprotein fluorescence imaging in mice. These responses were reduced immediately after cutting the sensory nerves. However, the remaining cortical responses mediated by nearby nerves were potentiated within a few hours after nerve cutting. Nerve injury induces neuropathic pain. In the present study, mice exhibited tactile allodynia 1-2 weeks after nerve injury. Lesioning of the ipsilateral dorsal column, mediating tactile cortical responses, abolished somatic cortical responses to tactile stimuli. However, nontactile cortical responses appeared in response to the same tactile stimuli within a few hours after nerve injury, indicating that tactile allodynia was acutely initiated. We investigated the trigger mechanisms underlying the cortical changes. Endogenous glial cell line-derived neurotrophic factor (GDNF), found in the Meissner corpuscles, induced basal firing ∼0.1 Hz or less in its Aβ tactile afferents, and disruption of the basal firing triggered the potentiation of nontactile cortical responses. Application of 10 nm LY341495 [(2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid], a specific antagonist of group II metabotropic glutamate receptors (mGluRs), on to the surface of the spinal cord also induced the potentiation of nontactile cortical responses. Together, it is suggested that low-frequency afferent firing produced by GDNF in touch-sensitive nerve fibers continuously activated spinal group II mGluRs and that failure of this activation triggered tactile allodynia.
Collapse
|
13
|
Takeda M, Tsuboi Y, Kitagawa J, Nakagawa K, Iwata K, Matsumoto S. Potassium channels as a potential therapeutic target for trigeminal neuropathic and inflammatory pain. Mol Pain 2011; 7:5. [PMID: 21219657 PMCID: PMC3024960 DOI: 10.1186/1744-8069-7-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/10/2011] [Indexed: 01/14/2023] Open
Abstract
Previous studies in several different trigeminal nerve injury/inflammation models indicated that the hyperexcitability of primary afferent neurons contributes to the pain pathway underlying mechanical allodynia. Although multiple types of voltage-gated ion channels are associated with neuronal hyperexcitability, voltage-gated K+ channels (Kv) are one of the important physiological regulators of membrane potentials in excitable tissues, including nociceptive sensory neurons. Since the opening of K+ channels leads to hyperpolarization of cell membrane and a consequent decrease in cell excitability, several Kv channels have been proposed as potential target candidates for pain therapy. In this review, we focus on common changes measured in the Kv channels of several different trigeminal neuropathic/inflammatory pain animal models, particularly the relationship between changes in Kv channels and the excitability of trigeminal ganglion (TRG) neurons. We also discuss the potential of Kv channel openers as therapeutic agents for trigeminal neuropathic/inflammatory pain, such as mechanical allodynia.
Collapse
Affiliation(s)
- Mamoru Takeda
- Department of Physiology, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20 Fujimi-cho, Chiyoda-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|