1
|
Ai S, Zhang Y, Chen Y, Zhang T, Zhong G, Yi X. Insect-Microorganism Interaction Has Implicates on Insect Olfactory Systems. INSECTS 2022; 13:1094. [PMID: 36555004 PMCID: PMC9787996 DOI: 10.3390/insects13121094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Olfaction plays an essential role in various insect behaviors, including habitat selection, access to food, avoidance of predators, inter-species communication, aggregation, and reproduction. The olfactory process involves integrating multiple signals from external conditions and internal physiological states, including living environments, age, physiological conditions, and circadian rhythms. As microorganisms and insects form tight interactions, the behaviors of insects are constantly challenged by versatile microorganisms via olfactory cues. To better understand the microbial influences on insect behaviors via olfactory cues, this paper summarizes three different ways in which microorganisms modulate insect behaviors. Here, we deciphered three interesting aspects of microorganisms-contributed olfaction: (1) How do volatiles emitted by microorganisms affect the behaviors of insects? (2) How do microorganisms reshape the behaviors of insects by inducing changes in the synthesis of host volatiles? (3) How do symbiotic microorganisms act on insects by modulating behaviors?
Collapse
Affiliation(s)
- Shupei Ai
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yuhua Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyao Chen
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Binning SA, Roche DG, Grutter AS, Colosio S, Sun D, Miest J, Bshary R. Cleaner wrasse indirectly affect the cognitive performance of a damselfish through ectoparasite removal. Proc Biol Sci 2019. [PMID: 29514969 DOI: 10.1098/rspb.2017.2447] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cleaning organisms play a fundamental ecological role by removing ectoparasites and infected tissue from client surfaces. We used the well-studied cleaning mutualisms involving the cleaner wrasse, Labroides dimidiatus, to test how client cognition is affected by ectoparasites and whether these effects are mitigated by cleaners. Ambon damselfish (Pomacentrus amboinensis) collected from experimental reef patches without cleaner wrasse performed worse in a visual discrimination test than conspecifics from patches with cleaners. Endoparasite abundance also negatively influenced success in this test. Visual discrimination performance was also impaired in damselfish experimentally infected with gnathiid (Crustacea: Isopoda) ectoparasites. Neither cleaner absence nor gnathiid infection affected performance in spatial recognition or reversal learning tests. Injection with immune-stimulating lipopolysaccharide did not affect visual discrimination performance relative to saline-injected controls, suggesting that cognitive impairments are not due to an innate immune response. Our results highlight the complex, indirect role of cleaning organisms in promoting the health of their clients via ectoparasite removal and emphasize the negative impact of parasites on host's cognitive abilities.
Collapse
Affiliation(s)
- Sandra A Binning
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland .,School of Biological Sciences, The University of Queensland, St-Lucia, Australia.,Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
| | - Dominique G Roche
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,School of Biological Sciences, The University of Queensland, St-Lucia, Australia
| | - Alexandra S Grutter
- School of Biological Sciences, The University of Queensland, St-Lucia, Australia
| | - Simona Colosio
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Derek Sun
- School of Biological Sciences, The University of Queensland, St-Lucia, Australia
| | - Joanna Miest
- Department of Life and Sports Sciences, University of Greenwich, Kent, UK
| | - Redouan Bshary
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
3
|
Ciria LF, Muñoz MA, Gea J, Peña N, Miranda JGV, Montoya P, Vila J. Head movement measurement: An alternative method for posturography studies. Gait Posture 2017; 52:100-106. [PMID: 27888694 DOI: 10.1016/j.gaitpost.2016.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 07/26/2016] [Accepted: 11/09/2016] [Indexed: 02/02/2023]
Abstract
The present study evaluated the measurement of head movements as a valid method for postural emotional studies using the comparison of simultaneous recording of center of pressure (COP) sway as criterion. Thirty female students viewed a set of 12 pleasant, 12 unpleasant and 12 neutral pictures from the International Affective Picture System, repeated twice, using a block presentation procedure while standing on a force platform (AMTI AccuSway). Head movements were recorded using a webcam (©KPC139E) located in the ceiling in line with the force platform and a light-emitting diode (LED) placed on the top of the head. Open source software (CvMob 3.1) was used to process the data. High indices of correlation and coherence between head and COP sway were observed. In addition, pleasant pictures, compared with unpleasant pictures, elicited greater body sway in the anterior-posterior axis, suggesting an approach response to appetitive stimuli. Thus, the measurement of head movement can be an alternative or complementary method to recording COP for studying human postural changes.
Collapse
Affiliation(s)
- L F Ciria
- Human Psychophysiology and Health Group, Mind, Brain and Behavior Research Center-CIMCYC, University of Granada, Spain
| | - M A Muñoz
- Human Psychophysiology and Health Group, Mind, Brain and Behavior Research Center-CIMCYC, University of Granada, Spain.
| | - J Gea
- Research Institute oF Health Sciences (IUNICS), University of Balearic Islands (UIB), Palma, Spain
| | - N Peña
- Department of Physiotherapy, Faculdade de Ciências da Saúde, Federal University of Bahia, Salvador, Brazil
| | - J G V Miranda
- Department of Physics of the Earth and the Environment, Instituto de Fisica Federal University of Bahia, Salvador, Brazil
| | - P Montoya
- Research Institute oF Health Sciences (IUNICS), University of Balearic Islands (UIB), Palma, Spain
| | - J Vila
- Human Psychophysiology and Health Group, Mind, Brain and Behavior Research Center-CIMCYC, University of Granada, Spain
| |
Collapse
|
4
|
Khalil S, Jacobson E, Chambers MC, Lazzaro BP. Systemic bacterial infection and immune defense phenotypes in Drosophila melanogaster. J Vis Exp 2015:e52613. [PMID: 25992475 PMCID: PMC4542538 DOI: 10.3791/52613] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fruit fly Drosophila melanogaster is one of the premier model organisms for studying the function and evolution of immune defense. Many aspects of innate immunity are conserved between insects and mammals, and since Drosophila can readily be genetically and experimentally manipulated, they are powerful for studying immune system function and the physiological consequences of disease. The procedure demonstrated here allows infection of flies by introduction of bacteria directly into the body cavity, bypassing epithelial barriers and more passive forms of defense and allowing focus on systemic infection. The procedure includes protocols for the measuring rates of host mortality, systemic pathogen load, and degree of induction of the host immune system. This infection procedure is inexpensive, robust and quantitatively repeatable, and can be used in studies of functional genetics, evolutionary life history, and physiology.
Collapse
|
5
|
Nepoux V, Babin A, Haag C, Kawecki TJ, Le Rouzic A. Quantitative genetics of learning ability and resistance to stress in Drosophila melanogaster. Ecol Evol 2015; 5:543-56. [PMID: 25691979 PMCID: PMC4328760 DOI: 10.1002/ece3.1379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 11/12/2022] Open
Abstract
Even though laboratory evolution experiments have demonstrated genetic variation for learning ability, we know little about the underlying genetic architecture and genetic relationships with other ecologically relevant traits. With a full diallel cross among twelve inbred lines of Drosophila melanogaster originating from a natural population (0.75 < F < 0.93), we investigated the genetic architecture of olfactory learning ability and compared it to that for another behavioral trait (unconditional preference for odors), as well as three traits quantifying the ability to deal with environmental challenges: egg-to-adult survival and developmental rate on a low-quality food, and resistance to a bacterial pathogen. Substantial additive genetic variation was detected for each trait, highlighting their potential to evolve. Genetic effects contributed more than nongenetic parental effects to variation in traits measured at the adult stage: learning, odorant perception, and resistance to infection. In contrast, the two traits quantifying larval tolerance to low-quality food were more strongly affected by parental effects. We found no evidence for genetic correlations between traits, suggesting that these traits could evolve at least to some degree independently of one another. Finally, inbreeding adversely affected all traits.
Collapse
Affiliation(s)
- Virginie Nepoux
- Department of Ecology and Evolution, University of Lausanne Lausanne, CH-1015, Switzerland
| | - Aurélie Babin
- Department of Ecology and Evolution, University of Lausanne Lausanne, CH-1015, Switzerland
| | - Christoph Haag
- Centre d'Écologie Fonctionnelle et Évolutive, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHA Montpellier 5, FR-34293, France
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne Lausanne, CH-1015, Switzerland
| | - Arnaud Le Rouzic
- Laboratoire Evolution Génome et Spéciation, UPR 9034, CNRS Gif-sur-Yvette, FR-91198, France
| |
Collapse
|