1
|
Wang D, Feng Y, Yang M, Sun H, Zhang Q, Wang R, Tong S, Su R, Jin Y, Wang Y, Lu Z, Han L, Sun Y. Variations in the oral microbiome and metabolome of methamphetamine users. mSystems 2024; 9:e0099123. [PMID: 38112416 PMCID: PMC10804968 DOI: 10.1128/msystems.00991-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Drug addiction can seriously damage human physical and mental health, while detoxification is a long and difficult process. Although studies have reported changes in the oral microbiome of methamphetamine (METH) users, the role that the microbiome plays in the process of drug addiction is still unknown. This study aims to explore the function of the microbiome based on analysis of the variations in the oral microbiome and metabolome of METH users. We performed the 16S rRNA sequencing analysis based on the oral saliva samples collected from 278 METH users and 105 healthy controls (CTL). In addition, the untargeted metabolomic profiling was conducted based on 220 samples. Compared to the CTL group, alpha diversity was reduced in the group of METH users and the relative abundances of Peptostreptococcus and Gemella were significantly increased, while the relative abundances of Campylobacter and Aggregatibacter were significantly decreased. Variations were also detected in oral metabolic pathways, including enhanced tryptophan metabolism, lysine biosynthesis, purine metabolism, and steroid biosynthesis. Conversely, the metabolic pathways of porphyrin metabolism, glutathione metabolism, and pentose phosphate were significantly reduced. It was speculated that four key microbial taxa, i.e., Peptostreptococcus, Gemella, Campylobacter, and Aggregatibacter, could be involved in the toxicity and addiction mechanisms of METH by affecting the above metabolic pathways. It was found that with the increase of drug use years, the content of tryptamine associated with neuropsychiatric disorders was gradually increased. Our study provides novel insights into exploring the toxic damage and addiction mechanisms underlying the METH addiction.IMPORTANCEIt was found that with the increase of drug use years, the content of tryptamine associated with neuropsychiatric disorders gradually increased. The prediction models based on oral microbiome and metabolome could effectively predict the methamphetamine (METH) smoking. Our study provides novel insights into the exploration of the molecular mechanisms regulating the toxic damage and addiction of METH as well as new ideas for early prevention and treatment strategies of METH addiction.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Orthopedic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yu Feng
- Department of Orthopedic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Min Yang
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haihui Sun
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingchen Zhang
- Department of Orthopedics, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rongrong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Shuqing Tong
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rui Su
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lihui Han
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Zhang J, Liu W, Shi L, Liu X, Wang M, Li W, Yu D, Wang Y, Zhang J, Yun K, Yan J. The Effects of Drug Addiction and Detoxification on the Human Oral Microbiota. Microbiol Spectr 2023; 11:e0396122. [PMID: 36722952 PMCID: PMC10100366 DOI: 10.1128/spectrum.03961-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 02/02/2023] Open
Abstract
Drug addiction can powerfully and chronically damage human health. Detoxification contributes to health recovery of the body. It is well established that drug abuse is associated with poor oral health in terms of dental caries and periodontal diseases. We supposed that drug addiction and detoxification might have significant effects on the oral microbiota. To test the hypothesis, we assessed the effects of drug (heroin and methylamphetamine) addiction/detoxification on the oral microbiota based on 16S rRNA gene sequencing by an observational investigation, including 495 saliva samples from participants. The oral microbial compositions differed between non-users, current and former drug users. Lower alpha diversities were observed in current drug users, with no significant differences between non-users and former drug users. Heroin and METH addiction can cause consistent variations in several specific phyla, such as the enrichment of Acidobacteria and depletion of Proteobacteria and Tenericutes. Current drug users had significantly lower relative abundances of Neisseria subflava and Haemophilus parainfluenzae compared to non-users and former drug users. The result of random forest prediction model suggested that the oral microbiota has a powerful classification potential for distinguishing current drug users from non-users and former drug users. A cooccurrence network analysis showed that current drug users had more complex oral microbial networks and lower functional modularity. Overall, our study suggested that drug addiction may damage the balance of the oral microbiota. These results may have benefits for further understanding the effects of addiction-related oral microbiota on the health of drug users and promoting the microbiota to serve as a potential tool for accurate forensic identification. IMPORTANCE Drug addiction has serious negative consequences for human health and public security. The evidence indicates that drug abuse can cause poor oral health. In the current study, we observed that drug addiction caused oral microbial dysbiosis. Detoxication have positive effects on the recovery of oral microbial community structures to some extent. Understanding the effects of drug addiction and detoxification on oral microbial communities will promote a more rational approach for recovering the oral function and health of drug users. Furthermore, specific microbial species might be considered biomarkers that could provide information regarding drug abuse status for saliva left at crime scenes. To the best of our knowledge, this is the first report on the role of the oral microbiota in drug addiction and detoxification. Our findings give new clues to understand the association between drug addiction and oral health.
Collapse
Affiliation(s)
- Jun Zhang
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Wenli Liu
- Beijing Center for Physical and Chemical Analysis, Beijing, People's Republic of China
| | - Linyu Shi
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xu Liu
- Beijing Center for Physical and Chemical Analysis, Beijing, People's Republic of China
| | - Mengchun Wang
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Wanting Li
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Daijing Yu
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yaya Wang
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jingjing Zhang
- Beijing Center for Physical and Chemical Analysis, Beijing, People's Republic of China
| | - Keming Yun
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jiangwei Yan
- Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
3
|
Barkell GA, Parekh SV, Paniccia JE, Martin AJ, Reissner KJ, Knapp DJ, Robinson SL, Thiele TE, Lysle DT. Chronic ethanol consumption exacerbates future stress-enhanced fear learning, an effect mediated by dorsal hippocampal astrocytes. Alcohol Clin Exp Res 2022; 46:2177-2190. [PMID: 36349797 PMCID: PMC10187052 DOI: 10.1111/acer.14963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD) are highly comorbid, yet there is a lack of preclinical research investigating how prior ethanol (EtOH) dependence influences the development of a PTSD-like phenotype. Furthermore, the neuroimmune system has been implicated in the development of both AUD and PTSD, but the extent of glial involvement in this context remains unclear. A rodent model was developed to address this gap in the literature. METHODS We used a 15-day exposure to the 5% w/v EtOH low-fat Lieber-DeCarli liquid diet in combination with the stress-enhanced fear learning (SEFL) paradigm to investigate the effects of chronic EtOH consumption on the development of a PTSD-like phenotype. Next, we used a reverse transcription quantitative real-time polymerase chain reaction to quantify mRNA expression of glial cell markers GFAP (astrocytes) and CD68 (microglia) following severe footshock stress in EtOH-withdrawn rats. Finally, we tested the functional contribution of dorsal hippocampal (DH) astrocytes in the development of SEFL in EtOH-dependent rats using astrocyte-specific Gi designer receptors exclusively activated by designer drugs (Gi -DREADD). RESULTS Results demonstrate that chronic EtOH consumption and withdrawal exacerbate future SEFL. Additionally, we found significantly increased GFAP mRNA expression in the dorsal and ventral hippocampus and amygdalar complex following the severe stressor in EtOH-withdrawn animals. Finally, the stimulation of the astroglial Gi -DREADD during EtOH withdrawal prevented the EtOH-induced enhancement of SEFL. CONCLUSIONS Collectively, results indicate that prior EtOH dependence and withdrawal combined with a severe stressor potentiate future enhanced fear learning. Furthermore, DH astrocytes significantly contribute to this change in behavior. Overall, these studies provide insight into the comorbidity of AUD and PTSD and the potential neurobiological mechanisms behind increased susceptibility to a PTSD-like phenotype in individuals with AUD.
Collapse
Affiliation(s)
- Gillian A Barkell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shveta V Parekh
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jacqueline E Paniccia
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alia J Martin
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Darin J Knapp
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stacey L Robinson
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Todd E Thiele
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Donald T Lysle
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|