1
|
Liu D, Zhang M, Xu X, Zhong X, Ma C, Zheng X, Wu X, Wang G. Involvement of CXCL12/CXCR4 in CB2 receptor agonist-attenuated morphine tolerance in Walker 256 tumor-bearing rats with cancer pain. Eur J Med Res 2024; 29:580. [PMID: 39696656 DOI: 10.1186/s40001-024-02207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
While low-dose cannabinoid 2 (CB2) receptor agonists attenuate morphine tolerance in cancer pain models, chemokine ligand 12 (CXCL12)/chemokine receptor 4 (CXCR4) expression induces morphine tolerance. Whether CB2 receptor agonists attenuate morphine tolerance by modulating CXCL12/CXCR4 signaling or whether CXCL12/CXCR4 signaling affects the mu opioid receptor (MOR) in the development of morphine tolerance in cancer pain remains unclear. In this study, we investigated the attenuation of morphine tolerance by a non-analgesic dose of the CB2 receptor agonist AM1241, focusing specifically on the modulation of CXCL12/CXCR4 signaling and its effect on the MOR. Rats received intrathecal Walker 256 tumor cell implantations and were treated with morphine combined with the intrathecal injection of AM1241 or the CB2 receptor antagonists AM630 and AM1241, or a CXCL12-neutralizing antibody, exogenous CXCL12, or the CXCR4 antagonist AMD3100. Our results show that CXCL12 and CXCR4 levels increased significantly in morphine-tolerant rats and were reduced by AM1241 pretreatment, which was reversed by AM630. CXCL12/CXCR4 expression accelerated the development of morphine tolerance and downregulated MOR expression. CXCR4 colocalized with MOR and CB2. Therefore, a non-analgesic dose of AM1241 attenuated morphine tolerance via CXCL12/CXCR4 signaling, whereas CXCL12/CXCR4 signaling participated in the development of morphine tolerance, potentially by modulating MOR expression in Walker 256 tumor-bearing rats.
Collapse
MESH Headings
- Animals
- Receptors, CXCR4/metabolism
- Cancer Pain/drug therapy
- Cancer Pain/etiology
- Cancer Pain/metabolism
- Rats
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Morphine/pharmacology
- Drug Tolerance
- Chemokine CXCL12/metabolism
- Carcinoma 256, Walker/drug therapy
- Carcinoma 256, Walker/metabolism
- Carcinoma 256, Walker/pathology
- Male
- Cannabinoids/pharmacology
- Analgesics, Opioid/pharmacology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Rats, Wistar
Collapse
Affiliation(s)
- Dandan Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Mingyue Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xiaohai Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuelai Zhong
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Chao Ma
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiaoyu Zheng
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xiaohong Wu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| | - Guonian Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Yang T, Xu W, Zhao J, Chen J, Li S, Lin L, Zhong Y, Yang Z, Xie T, Ding Y. Construction of circRNA-mediated ceRNA network and immunoassay for investigating pathogenesis of COPD. Front Genet 2024; 15:1402856. [PMID: 39290984 PMCID: PMC11405249 DOI: 10.3389/fgene.2024.1402856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Background The chronic respiratory condition known as chronic obstructive pulmonary disease (COPD) was one of the main causes of death and disability worldwide. This study aimed to explore and elucidate new targets and molecular mechanisms of COPD by constructing competitive endogenous RNA (ceRNA) networks. Methods GSE38974 and GSE106986 were used to select DEGs in COPD samples and normal samples. Cytoscape software was used to construct and present protein-protein interaction (PPI) network, mRNA-miRNA co-expression network and ceRNA network. The CIBERSORT algorithm and the Lasso model were used to screen the immune infiltrating cells and hub genes associated with COPD, and the correlation between them was analyzed. COPD cell models were constructed in vitro and the expression level of ceRNA network factors mediated by hub gene was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results In this study, 852 differentially expressed genes were screened in the GSE38974 dataset, including 439 upregulated genes and 413 downregulated genes. Gene clustering analysis of PPI network results was performed using the Minimum Common Tumor Data Element (MCODE) in Cytoscape, and seven hub genes were screened using five algorithms in cytoHubba. CCL20 was verified as an important hub gene based on mRNA-miRNA co-expression network, GSE106986 database validation and the analysis of ROC curve results. Finally, we successfully constructed the circDTL-hsa-miR-330-3p-CCL20 network by Cytoscape. Immune infiltration analysis suggested that CCL20 can co-regulate immune cell migration and infiltration through chemokines CCL7 and CXCL3. In vitro experiments, the expression of circDTL and CCL20 was increased, while the expression of hsa-miR-330-3p was decreased in the COPD cell model. Conclusion By constructing the circDTL-hsa-miR-330-3p-CCL20 network, this study contributes to a better understanding of the molecular mechanism of COPD development, which also provides important clues for the development of new therapeutic strategies and drug targets.
Collapse
Affiliation(s)
- Ting Yang
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
- Zayun Township Health Center, Qiongzhong Li and Miao Autonomous County, Haikou, Hainan, China
| | - Wenya Xu
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jie Zhao
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jie Chen
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Siguang Li
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Lingsang Lin
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Yi Zhong
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Zehua Yang
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Tian Xie
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yipeng Ding
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
3
|
Bodnar RJ. Endogenous opiates and behavior: 2023. Peptides 2024; 179:171268. [PMID: 38943841 DOI: 10.1016/j.peptides.2024.171268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
This paper is the forty-sixth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2023 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug and alcohol abuse (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Psychology Doctoral Sub-Program, Queens College and the Graduate Center, City University of New York, USA.
| |
Collapse
|
4
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
5
|
Han S, Gao J, Wang Z, Xiao Y, Ge Y, Liang Y, Gao J. Genetically supported causality between gut microbiota, immune cells and morphine tolerance: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1343763. [PMID: 38389539 PMCID: PMC10882271 DOI: 10.3389/fmicb.2024.1343763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Background Previous researches have suggested a significant connection between the gut microbiota/immune cells and morphine tolerance (MT), but there is still uncertainty regarding their causal relationship. Hence, our objective is to inverstigate this causal association and reveal the impact of gut microbiota/immune cells on the risk of developing MT using a two-sample Mendelian randomization (MR) study. Methods We conducted a comprehensive analysis using genome-wide association study (GWAS) summary statistics for gut microbiota, immune cells, and MT. The main approach employed was the inverse variance-weighted (IVW) method in MR. To assess horizontal pleiotropy and remove outlier single-nucleotide polymorphisms (SNPs), we utilized the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) technique as well as MR-Egger regression. Heterogeneity detection was performed using Cochran's Q-test. Additionally, leave-one-out analysis was carried out to determine if any single SNP drove the causal association signals. Finally, we conducted a reverse MR to evaluate the potential of reverse causation. Results We discovered that 6 gut microbial taxa and 16 immune cells were causally related to MT (p < 0.05). Among them, 2 bacterial features and 9 immunophenotypes retained a strong causal relationship with lower risk of MT: genus. Lachnospiraceae NK4A136group (OR: 0.962, 95% CI: 0.940-0.987, p = 0.030), genus. RuminococcaceaeUCG011 (OR: 0.960, 95% CI: 0.946-0.976, p = 0.003), BAFF-R on B cell (OR: 0.972, 95% CI: 0.947-0.998, p = 0.013). Furthermore, 4 bacterial features and 7 immunophenotypes were identified to be significantly associated with MT risk: genus. Flavonifractor (OR: 1.044, 95% CI: 1.017-1.069, p = 0.029), genus. Prevotella9 (OR: 1.054, 95% CI: 1.020-1.090, p = 0.037), B cell % CD3-lymphocyte (OR: 1.976, 95% CI: 1.027-1.129, p = 0.026). The Cochrane's Q test revealed no heterogeneity (p > 0.05). Furthermore, the MR-Egger and MR-PRESSO analyses reveal no instances of horizontal pleiotropy (p > 0.05). Besides, leave-one-out analysis confirmed the robustness of MR results. After adding BMI to the multivariate MR analysis, the gut microbial taxa and immune cells exposure-outcome effect were attenuated. Conclusion Our research confirm the potential link between gut microbiota and immune cells with MT, shedding light on the mechanism by which gut microbiota and immune cells may contribute to MT. These findings lay the groundwork for future investigations into targeted prevention strategies.
Collapse
Affiliation(s)
- Shuai Han
- Department of Anesthesiology, Northern Jiangsu People’s Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
- Yangzhou University Medical College, Yangzhou, China
| | - Jiapei Gao
- Yangzhou University Medical College, Yangzhou, China
| | - Zi Wang
- Department of Anesthesiology, Northern Jiangsu People’s Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
- Yangzhou University Medical College, Yangzhou, China
| | - Yinggang Xiao
- Department of Anesthesiology, Northern Jiangsu People’s Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
- Yangzhou University Medical College, Yangzhou, China
| | - Yali Ge
- Department of Anesthesiology, Northern Jiangsu People’s Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
- Yangzhou University Medical College, Yangzhou, China
| | - Yongxin Liang
- Department of Anesthesiology, Women’s and Children’s Hospital Affiliated to Qingdao University, Qingdao, China
| | - Ju Gao
- Department of Anesthesiology, Northern Jiangsu People’s Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
- Yangzhou University Medical College, Yangzhou, China
| |
Collapse
|
6
|
Zhou M, Li S, Huang C. Physiological and pathological functions of circular RNAs in the nervous system. Neural Regen Res 2024; 19:342-349. [PMID: 37488888 PMCID: PMC10503630 DOI: 10.4103/1673-5374.379017] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed single-stranded RNAs that are expressed during the development of specific cells and tissues. CircRNAs play crucial roles in physiological and pathological processes by sponging microRNAs, modulating gene transcription, controlling the activity of certain RNA-binding proteins, and producing functional peptides. A key focus of research at present is the functionality of circRNAs in the nervous system and several advances have emerged over the last 2 years. However, the precise role of circRNAs in the nervous system has yet to be comprehensively reviewed. In this review, we first summarize the recently described roles of circRNAs in brain development, maturity, and aging. Then, we focus on the involvement of circRNAs in various diseases of the central nervous system, such as brain cancer, chronic neurodegenerative diseases, acute injuries of the nervous system, and neuropathic pain. A better understanding of the functionality of circRNAs will help us to develop potential diagnostic, prognostic, and therapeutic strategies to treat diseases of the nervous system.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shi Li
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
7
|
Dabrowski KR, Floris G, Gillespie A, Daws SE. Orbitofrontal intronic circular RNA from Nrxn3 mediates reward learning and motivation for reward. Prog Neurobiol 2024; 232:102546. [PMID: 38036039 PMCID: PMC10843848 DOI: 10.1016/j.pneurobio.2023.102546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/27/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
The orbitofrontal cortex (OFC) is a vital component of brain reward circuitry that is important for reward seeking behavior. However, OFC-mediated molecular mechanisms underlying rewarding behavior are understudied. Here, we report the first circular RNA (circRNA) profile associated with appetitive reward and identify regulation of 92 OFC circRNAs by sucrose self-administration. Among these changes, we observed downregulation of circNrxn3, a circRNA originating from neurexin 3 (Nrxn3), a gene involved in synaptogenesis, learning, and memory. Transcriptomic profiling via RNA sequencing and qPCR of the OFC following in vivo knock-down of circNrxn3 revealed differential regulation of genes associated with pathways important for learning and memory and altered splicing of Nrxn3. Furthermore, circNrxn3 knock-down enhanced sucrose self-administration and motivation for sucrose. Using RNA-immunoprecipitation, we report binding of circNrxn3 to the known Nrxn3 splicing factor SAM68. circNrxn3 is the first reported circRNA capable of regulating reward behavior and circNrxn3-mediated interactions with SAM68 may impact subsequent downstream processing of RNAs such as the regulation of gene expression and splicing.
Collapse
Affiliation(s)
- Konrad R Dabrowski
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Biology, Temple University, Philadelphia, PA, USA
| | - Gabriele Floris
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Aria Gillespie
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Li W, Lv Y, Sun Y. Roles of non-coding RNA in megakaryocytopoiesis and thrombopoiesis: new target therapies in ITP. Platelets 2023; 34:2157382. [PMID: 36550091 DOI: 10.1080/09537104.2022.2157382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Noncoding RNAs (ncRNAs) are a group of RNA molecules that cannot encode proteins, and a better understanding of the complex interaction networks coordinated by ncRNAs will provide a theoretical basis for the development of therapeutics targeting the regulatory effects of ncRNAs. Platelets are produced upon the differentiation of hematopoietic stem cells into megakaryocytes, 1011 per day, and are renewed every 8-9 days. The process of thrombopoiesis is affected by multiple factors, in which ncRNAs also exert a significant regulatory role. This article reviewed the regulatory roles of ncRNAs, mainly microRNAs (miRNAs), circRNAs (circular RNAs), and long non-coding RNAs (lncRNAs), in thrombopoiesis in recent years as well as their roles in primary immune thrombocytopenia (ITP).
Collapse
Affiliation(s)
- Wuquan Li
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Lv
- College of Life Science, Yantai University, Yantai, China
| | - Yeying Sun
- College of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
9
|
Daws SE, Gillespie A. Circular RNA regulation and function in drug seeking phenotypes. Mol Cell Neurosci 2023; 125:103841. [PMID: 36935046 PMCID: PMC10247439 DOI: 10.1016/j.mcn.2023.103841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Drug overdoses have increased dramatically in the United States over the last decade where they are now the leading cause of accidental death. To develop efficient therapeutic options for decreasing drug consumption and overdose risk, it is critical to understand the neurobiological changes induced by drug exposure. Chronic systemic exposure to all drug classes, including opioids, psychostimulants, nicotine, cannabis, and alcohol, induces profound molecular neuroadaptations within the central nervous system that may reveal crucial information about the lasting effects that these substances impart on brain cells. Transcriptome analyses of messenger RNAs (mRNAs) have identified gene patterns in the brain that result from exposure to various classes of drugs. However, mRNAs represent only a small fraction of the RNA within the cell, and drug exposure also impacts other classes of RNA that are largely understudied, especially circular RNAs. Circular RNAs (circRNAs) are a naturally occurring RNA species formed from back-splicing events during mRNA processing and are enriched in the nervous system. circRNAs are a pleiotropic class of RNAs and have a diverse impact on cellular function, with putative functions including regulation of mRNA transcription, protein translation, microRNA sponging, and sequestration of RNA-binding proteins. Recent studies have demonstrated that circRNAs can modulate cognition and are regulated in the brain in response to drug exposure, yet very few studies have explored the contribution of circRNAs to drug seeking phenotypes. In this review, we will provide an overview of the mechanisms of circRNA function in the cell to highlight how drug-induced circRNA dysregulation may impact the molecular substrates that mediate drug seeking behavior and the current studies that have reported drug-induced dysregulation of circRNAs in the brain. Furthermore, we will discuss how principles of circRNA biology can be adapted to study circRNAs in models of drug exposure and seek to provide further insight into the neurobiology of addiction.
Collapse
Affiliation(s)
- Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| | - Aria Gillespie
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| |
Collapse
|
10
|
Mazzeo F, Meccariello R, Guatteo E. Molecular and Epigenetic Aspects of Opioid Receptors in Drug Addiction and Pain Management in Sport. Int J Mol Sci 2023; 24:ijms24097831. [PMID: 37175536 PMCID: PMC10178540 DOI: 10.3390/ijms24097831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Opioids are substances derived from opium (natural opioids). In its raw state, opium is a gummy latex extracted from Papaver somniferum. The use of opioids and their negative health consequences among people who use drugs have been studied. Today, opioids are still the most commonly used and effective analgesic treatments for severe pain, but their use and abuse causes detrimental side effects for health, including addiction, thus impacting the user's quality of life and causing overdose. The mesocorticolimbic dopaminergic circuitry represents the brain circuit mediating both natural rewards and the rewarding aspects of nearly all drugs of abuse, including opioids. Hence, understanding how opioids affect the function of dopaminergic circuitry may be useful for better knowledge of the process and to develop effective therapeutic strategies in addiction. The aim of this review was to summarize the main features of opioids and opioid receptors and focus on the molecular and upcoming epigenetic mechanisms leading to opioid addiction. Since synthetic opioids can be effective for pain management, their ability to induce addiction in athletes, with the risk of incurring doping, is also discussed.
Collapse
Affiliation(s)
- Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples "Parthenope", 80133 Naples, Italy
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", 80133 Naples, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", 80133 Naples, Italy
| | - Ezia Guatteo
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", 80133 Naples, Italy
- IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
11
|
Jia Y, Qi X, Ma M, Cheng S, Cheng B, Liang C, Guo X, Zhang F. Integrating genome-wide association study with regulatory SNP annotations identified novel candidate genes for osteoporosis. Bone Joint Res 2023; 12:147-154. [PMID: 37051837 PMCID: PMC10003063 DOI: 10.1302/2046-3758.122.bjr-2022-0206.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Osteoporosis (OP) is a metabolic bone disease, characterized by a decrease in bone mineral density (BMD). However, the research of regulatory variants has been limited for BMD. In this study, we aimed to explore novel regulatory genetic variants associated with BMD. We conducted an integrative analysis of BMD genome-wide association study (GWAS) and regulatory single nucleotide polymorphism (rSNP) annotation information. Firstly, the discovery GWAS dataset and replication GWAS dataset were integrated with rSNP annotation database to obtain BMD associated SNP regulatory elements and SNP regulatory element-target gene (E-G) pairs, respectively. Then, the common genes were further subjected to HumanNet v2 to explore the biological effects. Through discovery and replication integrative analysis for BMD GWAS and rSNP annotation database, we identified 36 common BMD-associated genes for BMD irrespective of regulatory elements, such as FAM3C (pdiscovery GWAS = 1.21 × 10-25, preplication GWAS = 1.80 × 10-12), CCDC170 (pdiscovery GWAS = 1.23 × 10-11, preplication GWAS = 3.22 × 10-9), and SOX6 (pdiscovery GWAS = 4.41 × 10-15, preplication GWAS = 6.57 × 10-14). Then, for the 36 common target genes, multiple gene ontology (GO) terms were detected for BMD such as positive regulation of cartilage development (p = 9.27 × 10-3) and positive regulation of chondrocyte differentiation (p = 9.27 × 10-3). We explored the potential roles of rSNP in the genetic mechanisms of BMD and identified multiple candidate genes. Our study results support the implication of regulatory genetic variants in the development of OP.
Collapse
Affiliation(s)
- Yumeng Jia
- School of Public Health,
Health Science Center, Xi'an Jiaotong
University, Xi'an, China
| | - Xin Qi
- Precision Medicine Center,
The First Affiliated Hospital of Xi'an Jiaotong
University, Xi'an, China
| | - Mei Ma
- School of Public Health,
Health Science Center, Xi'an Jiaotong
University, Xi'an, China
| | - Shiqiang Cheng
- School of Public Health,
Health Science Center, Xi'an Jiaotong
University, Xi'an, China
| | - Bolun Cheng
- School of Public Health,
Health Science Center, Xi'an Jiaotong
University, Xi'an, China
| | - Chujun Liang
- School of Public Health,
Health Science Center, Xi'an Jiaotong
University, Xi'an, China
| | - Xiong Guo
- School of Public Health,
Health Science Center, Xi'an Jiaotong
University, Xi'an, China
| | - Feng Zhang
- School of Public Health,
Health Science Center, Xi'an Jiaotong
University, Xi'an, China
| |
Collapse
|
12
|
Ouyang H, Zhang J, Chi D, Zhang K, Huang Y, Huang J, Huang W, Bai X. The YTHDF1-TRAF6 pathway regulates the neuroinflammatory response and contributes to morphine tolerance and hyperalgesia in the periaqueductal gray. J Neuroinflammation 2022; 19:310. [PMID: 36550542 PMCID: PMC9784087 DOI: 10.1186/s12974-022-02672-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Long-term use of opioids such as morphine has negative side effects, such as morphine analgesic tolerance and morphine-induced hyperalgesia (MIH). These side effects limit the clinical use and analgesic efficacy of morphine. Elucidation of the mechanisms and identification of feasible and effective methods or treatment targets to solve this clinical phenomenon are important. Here, we discovered that YTHDF1 and TNF receptor-associated factor 6 (TRAF6) are crucial for morphine analgesic tolerance and MIH. The m6A reader YTHDF1 positively regulated the translation of TRAF6 mRNA, and chronic morphine treatments enhanced the m6A modification of TRAF6 mRNA. TRAF6 protein expression was drastically reduced by YTHDF1 knockdown, although TRAF6 mRNA levels were unaffected. By reducing inflammatory markers such as IL-1β, IL-6, TNF-α and NF-κB, targeted reduction of YTHDF1 or suppression of TRAF6 activity in ventrolateral periaqueductal gray (vlPAG) slows the development of morphine analgesic tolerance and MIH. Our findings provide new insights into the mechanism of morphine analgesic tolerance and MIH indicating that YTHDF1 regulates inflammatory factors such as IL-1β, IL-6, TNF-α and NF-κB by enhancing TRAF6 protein expression.
Collapse
Affiliation(s)
- Handong Ouyang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Jianxing Zhang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Dongmei Chi
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Kun Zhang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Yongtian Huang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Jingxiu Huang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Wan Huang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Xiaohui Bai
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China ,grid.412536.70000 0004 1791 7851Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yangjiang Road West, Guangzhou, China
| |
Collapse
|