1
|
Zhao S, Nie Y, Wen L, Qin X, Huang L, Chu C, Qu M. Cognitive impairment and vulnerability of cholinergic brain network in the Alzheimer's continuum: free-water imaging based on diffusion tensor imaging. Front Neurosci 2025; 19:1587702. [PMID: 40370658 PMCID: PMC12075144 DOI: 10.3389/fnins.2025.1587702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Background Increased extracellular free water (FW) is considered to provide better pathophysiological information than conventional diffusion tensor imaging (DTI) metrics. The cholinergic brain network is a key hub for cognitive function, and microstructural changes detected by free water imaging in this system may be associated with cognitive impairment in Alzheimer's disease (AD). However, the specific impact of FW changes in the cholinergic brain network on cognitive domains across the AD continuum and their diagnostic value remain unclear. Methods Here, we investigated the basal forebrain cholinergic free water alterations based on free water-corrected diffusion tensor imaging in healthy controls (n = 36), amnestic mild cognitive impairment (aMCI; n = 31), the AD group (n = 33). The cholinergic basal forebrain subregions were divided into the Broca diagonal band (Ch1-3) and the Meynert basal nucleus (Ch4). The cognitive domains performance was measured using the Montreal Cognitive Assessment (MoCA). Additionally, we evaluated the diagnostic value of free water fraction (FWf) within the cholinergic system. Results FWf in the bilateral Ch1-3 and Ch4 regions increased with age, and was significantly higher in aMCI and AD (p < 0.001). In AD, the FWf within Ch4 was correlated with total MoCA score (R = -0.42, p = 0.015), especially with visual spatial/executive (R = -0.47, p = 0.006) and orientation deficits (R = -0.38, p = 0.029). No significant correlations were found in the aMCI group. ROC curve analysis showed that FWf within the cholinergic brain network had high diagnostic efficacy for AD versus HC (AUC = 0.958, 95% CI = 0.909-1.00), and moderate diagnostic efficacy for aMCI versus HC (AUC = 0.795, 95% CI = 0.685-0.905) and aMCI versus AD (AUC = 0.719, 95% CI = 0.589-0.850). Conclusion FW imaging captures microstructural damage in the cholinergic brain network across the entire AD continuum. These changes occur early in aMCI but selectively affect domain-specific cognition in the later stages of AD, possibly through cholinergic network dysfunction. Our results highlight the potential of free water imaging as a biomarker for cognitive decline.
Collapse
Affiliation(s)
- Simin Zhao
- Third Clinical Medical College of Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Nie
- The Department of Neurology, Gansu Provincial Hospital, Lanzhou, China
| | - Lulu Wen
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xinzuo Qin
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Liyuan Huang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Changbiao Chu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Miao Qu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Chinese Medicine, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Cao Y, Lizano P, Li M, Opel N, Sen ZD, Colic L, Sun H, Zhou X, Aruci M, Chand T, Long X, Deng G, Mu J, Guo S, Sun H, Gong Q, Qiu C, Walter M, Jia Z. Association between peripheral inflammation and body mass index on white matter integrity and free water in bipolar II depression. Brain Behav Immun 2025; 128:208-218. [PMID: 40199429 DOI: 10.1016/j.bbi.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/12/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025] Open
Abstract
Immuno-metabolic dysregulation is implicated in mood disorders and elucidating non-invasive brain correlates may aid clinical translation of pathomechanism. This study aims to investigate the interrelationship between peripheral inflammation and body mass index (BMI) and their effects on white matter (WM) microstructure and free water (FW) in bipolar II depression (BDII-D). Voxel-wise FW and FW-corrected fractional anisotropy (FAt) were compared between 146 BDII-D and 151 healthy controls (HCs) using FSL Randomise. Partial correlations were used to explore associations between BMI, peripheral inflammation, FW measures, and psychiatric symptoms. Moderation analysis examined the interrelationships among BMI, peripheral inflammation, and FW measures. BDII-D showed lower FAt in the genu of the corpus callosum (CC) and bilateral anterior corona radiata, and higher FW in the body of the CC compared with HCs. Higher BMI was linked to lower global FAt (q < 0.001), while higher peripheral inflammation was associated with higher global FW (q ≤ 0.01) in BDII-D. Lower FAt in the genu of the CC and higher FW in the body of CC were significantly related to higher BMI, inflammation, and greater depressive symptoms (q < 0.05). Low-grade Inflammation moderated the relationship between higher BMI and lower FAt in the genu of the CC in BDII-D (B = -3.094e-05, p < 0.001). We found evidence for a mechanistic link between immune-metabolic dysregulation and altered connection in BDII-D. Next to mediating BMI effects on WM integrity, there seems to exist specific relationships between inflammation and BMI with different MR-based tract markers that need further investigation.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany; Department of Radiology, Huaxi MR Research Center (HMRRC), Institute of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; The Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany; German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Germany
| | - Huan Sun
- Department of Psychiatry, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoqin Zhou
- Department of Clinical Research Management, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Merita Aruci
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany
| | - Tara Chand
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Jindal Institute of Behavioural Sciences, O. P. Jindal Global University (Sonipat), Haryana 131001, India
| | - Xipeng Long
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310008, China
| | - Gaoju Deng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jingshi Mu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shuo Guo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huaiqiang Sun
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institute of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China; Department of Radiology, Huaxi MR Research Center (HMRRC), Institute of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany; German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany.
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Zhang W, Qiu C, Lui S. Imaging Biomarker Studies of Antipsychotic-Naïve First-Episode Schizophrenia in China: Progress and Future Directions. Schizophr Bull 2025; 51:379-391. [PMID: 39841545 PMCID: PMC11908865 DOI: 10.1093/schbul/sbaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
BACKGROUND AND HYPOTHESIS Identifying biomarkers at onset and specifying the progression over the early course of schizophrenia is critical for better understanding of illness pathophysiology and providing novel information relevant to illness prognosis and treatment selection. Studies of antipsychotic-naïve first-episode schizophrenia in China are making contributions to this goal. STUDY DESIGN A review was conducted for how antipsychotic-naïve first-episode patients were identified and studied, the investigated biological measures, with a focus on neuroimaging, and how they extend the understanding of schizophrenia regarding the illness-related brain abnormality, treatment effect characterization and outcome prediction, and subtype discovery and patient stratification, in comparison to findings from western populations. Finally, how biomarker studies should be conducted in the future was also discussed. STUDY RESULTS Gray matter reduction has been most robust within temporo-frontal regions and cerebellum, whereas altered brain function has been most pronounced in cerebello-cortical connections and default mode network, each might be related to long-standing illness alterations and acute physiological alterations at measurement. By studying untreated patients, the progressive alterations in temporal and frontal regions and enlargements in bilateral putamen were found more likely effects of illness, not just treatment. Some of these changes were found with potential to predict clinical outcomes and differentiate biologically patient subgroups. CONCLUSIONS Mostly with data-driven approaches, the studies from China are helping identify candidate imaging biomarkers in schizophrenia that are related to early-stage illness, treatment effects, and biological subgroup differentiation. Future work is needed to translate these biomarkers for clinical application.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital, Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Guadilla I, Fouto AR, Ruiz-Tagle A, Esteves I, Caetano G, Silva NA, Vilela P, Gil-Gouveia R, Aja-Fernández S, Figueiredo P, Nunes RG. White matter alterations in episodic migraine without aura patients assessed with diffusion MRI: effect of free water correction. J Headache Pain 2025; 26:31. [PMID: 39939922 PMCID: PMC11817245 DOI: 10.1186/s10194-025-01970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/30/2025] [Indexed: 02/14/2025] Open
Abstract
OBJECTIVE To assess the effect of modeling free water (FW) on the identification of white matter (WM) microstructure alterations using diffusion Magnetic Resonance Imaging (dMRI) in episodic migraine without aura patients compared with healthy controls. BACKGROUND Diffusion tensor imaging (DTI) studies examining WM in migraine patients previously overlooked the potential influence of FW partial volume effects. Correcting FW effects could offer a clearer understanding of WM changes in migraine. This study is the first to incorporate FW effects when evaluating alterations in WM tracts in migraine patients, offering a comparison to standard DTI analysis. METHODS A group of 14 patients with low-frequency episodic menstrual-related migraine without aura and 15 healthy controls matched for the phase of the menstrual cycle were recruited and underwent dMRI acquisitions. FW partial volume fraction was estimated, the diffusion signal corrected and the diffusion parameters calculated from both FW-corrected and uncorrected signals. Tract-Based Spatial Statistics (TBSS) and WM skeleton regions of interest (ROI) analyses were used to compare between groups. RESULTS Comparisons between control subjects and migraine patients with TBSS and ROI analyses revealed significantly lower axial diffusivity (AD), both with and without FW correction, as well as altered FW values in migraine patients in some WM tracts. TBSS detected MD changes only after FW correction. CONCLUSIONS These findings suggest WM alterations in these migraine patients in comparison with control subjects, in accordance with other migraine studies. Differences in the diffusion parameters might point to inflammatory processes in migraine related to cellular swelling.
Collapse
Affiliation(s)
- Irene Guadilla
- Universidad Autónoma de Madrid, Madrid, Spain.
- Institute for Systems and Robotics - Lisboa, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Laboratorio de Procesado de Imagen, Universidad de Valladolid, Valladolid, Spain.
| | - Ana R Fouto
- Institute for Systems and Robotics - Lisboa, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Amparo Ruiz-Tagle
- Institute for Systems and Robotics - Lisboa, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Esteves
- Institute for Systems and Robotics - Lisboa, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Gina Caetano
- Institute for Systems and Robotics - Lisboa, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno A Silva
- Learning Health, Hospital da Luz, Lisbon, Portugal
| | - Pedro Vilela
- Imaging Department, Hospital da Luz, Lisbon, Portugal
| | - Raquel Gil-Gouveia
- Neurology Department, Hospital da Luz, Lisbon, Portugal
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisbon, Portugal
| | | | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rita G Nunes
- Institute for Systems and Robotics - Lisboa, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Bergamino M, McElvogue MM, Stokes AM, Alzheimer’s Disease Neuroimaging Initiative. Distinguishing Early from Late Mild Cognitive Impairment Using Magnetic Resonance Free-Water Diffusion Tensor Imaging. NEUROSCI 2025; 6:8. [PMID: 39846567 PMCID: PMC11755477 DOI: 10.3390/neurosci6010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and Alzheimer's disease. Differentiating early MCI (EMCI) from late MCI (LMCI) is crucial for early diagnosis and intervention. This study used free-water diffusion tensor imaging (fw-DTI) to investigate white matter differences and voxel-based correlations with Mini-Mental State Examination (MMSE) scores. Data from the Alzheimer's Disease Neuroimaging Initiative included 476 healthy controls (CN), 137 EMCI participants, and 62 LMCI participants. Significant MMSE differences were found between the CN and MCI groups, but not between EMCI and LMCI. However, distinct white matter changes were observed: LMCI showed a higher f-index and lower fw-fractional anisotropy (fw-FA) compared to EMCI in several white matter regions. These findings indicate specific white matter tracts involved in MCI progression. Voxel-based correlations between fw-DTI metrics and MMSE scores further supported these results. In conclusion, this study provides crucial insights into white matter changes associated with EMCI and LMCI, offering significant implications for future research and clinical practice.
Collapse
Affiliation(s)
| | | | - Ashley M. Stokes
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (M.B.); (M.M.M.)
| | | |
Collapse
|
6
|
Yesilkaya UH, Chen X, Watford L, McCoy E, Sen M, Genc I, Du F, Ongur D, Yuksel C. Poor self-reported sleep is associated with prolonged white matter T2 relaxation in psychotic disorders. Front Psychiatry 2025; 15:1456435. [PMID: 39839134 PMCID: PMC11747379 DOI: 10.3389/fpsyt.2024.1456435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Background Psychotic disorders are characterized by white matter (WM) abnormalities; however, their relationship with the various aspects of illness presentation remains unclear. Sleep disturbances are common in psychosis, and emerging evidence suggests that sleep plays a critical role in WM physiology. Therefore, it is plausible that sleep disturbances are associated with impaired WM integrity in these disorders. To test this hypothesis, we examined the association of self-reported sleep disturbances with WM transverse (T2) relaxation times in a cross-diagnostic sample of patients with psychosis. Methods A total of 28 patients with psychosis (11 schizophrenia spectrum disorders and 17 bipolar disorder with psychotic features) were included. Metabolite (N-acetyl aspartate, choline, and creatine) and water T2 relaxation times were measured in the anterior corona radiata at 4T. Sleep was evaluated using the Pittsburgh Sleep Quality Index (PSQI). Results PSQI total score showed a moderate to strong positive correlation with water T2 (r = 0.64, p< 0.001). Linear regressions showed that this association was independent of the overall severity of depressive, manic, or psychotic symptoms. In our exploratory analysis, sleep disturbance was correlated with free water percentage, suggesting that increased extracellular water may be a mechanism underlying the association of disturbed sleep and prolonged water T2 relaxation. Conclusion Our results highlight the connection between poor sleep and WM abnormalities in psychotic disorders. Future research using objective sleep measures and neuroimaging techniques suitable to probe free water is needed to further our insight into this relationship.
Collapse
Affiliation(s)
- Umit Haluk Yesilkaya
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
- Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Türkiye
| | - Xi Chen
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Lauren Watford
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
| | - Emma McCoy
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
| | - Meltem Sen
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
| | - Ilgin Genc
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
| | - Fei Du
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Dost Ongur
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Cagri Yuksel
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Dauvermann MR, Costello L, Tronchin G, Corley E, Holleran L, Mothersill D, Rokita KI, Kane R, Hallahan B, McDonald C, Pasternak O, Donohoe G, Cannon DM. Cellular and extracellular white matter alterations after childhood trauma experience in individuals with schizophrenia. Psychol Med 2025; 54:1-10. [PMID: 39757719 PMCID: PMC11779554 DOI: 10.1017/s0033291724003064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Childhood trauma (CT) is related to altered fractional anisotropy (FA) in individuals with schizophrenia (SZ). However, it remains unclear whether CT may influence specific cellular or extracellular compartments of FA in SZ with CT experience. We extended our previous study on FA in SZ (Costello et al., 2023) and examined the impact of CT on hypothesized lower free water-corrected FA (FAT) and higher extracellular free water (FW). METHOD Thirty-seven SZ and 129 healthy controls (HC) were grouped into the 'none/low' or 'high' CT group. All participants underwent diffusion-weighted magnetic resonance imaging. We performed tract-based spatial statistics to study the main effects of diagnostic group and CT, and the interaction between CT and diagnostic group across FAT and FW. RESULTS SZ displayed lower FAT within the corpus callosum and corona radiata compared to HC (p < 0.05, Threshold-Free Cluster Enhancement (TFCE)). Independent of diagnosis, we observed lower FAT (p < 0.05, TFCE) and higher FW (p < 0.05, TFCE) in both SZ and HC with high CT levels compared to SZ and HC with none or low CT levels. Furthermore, we did not identify an interaction between CT and diagnostic group (p > 0.05, TFCE). CONCLUSIONS These novel findings suggest that the impact of CT on lower FAT may reflect cellular rather than extracellular alterations in established schizophrenia. This highlights the impact of CT on white matter microstructure, regardless of diagnostic status.
Collapse
Affiliation(s)
- Maria R. Dauvermann
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Laura Costello
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Giulia Tronchin
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Emma Corley
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Laurena Holleran
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - David Mothersill
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Department of Psychology, School of Business, National College of Ireland, Dublin, Ireland
- Department of Psychiatry, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Karolina I. Rokita
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Ruán Kane
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Brian Hallahan
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Colm McDonald
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Ofer Pasternak
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gary Donohoe
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Dara M. Cannon
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| |
Collapse
|
8
|
Doorduin J. Imaging neuroglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:277-291. [PMID: 40122630 DOI: 10.1016/b978-0-443-19104-6.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Imaging can help us understand the role neuroglia plays in health and during the course of neurologic disorders. In vivo microscopy has had a great impact on our understanding of how neuroglia behaves during health and disease. While initially the technique was hindered by the limited penetration depth in brain tissue, recent advancements lead to increasing possibilities for imaging of deeper brain structures, even at super-resolution. Unfortunately, in vivo microscopy cannot be applied in a clinical setting and thus cannot be used to study neuroglia in patient populations. However, noninvasive imaging techniques like positron emission tomography (PET) and magnetic resonance imaging (MRI) can. PET has provided valuable information on the involvement of neuroglia in neurologic disorders. To more specifically image microglia and astrocytes, many new PET biomarkers have been defined for which PET tracers are continuously developed, evaluated, and improved. A cell-type specific PET tracer with favorable imaging characteristics can have a huge impact on neuroglia research. While being less sensitive than PET, MRI is a more accessible imaging technique. Initially, only general neuroinflammation processes could be imaged with MRI, but newly developed methods and sequences allow for increasing cell-type specificity. Overall, while each imaging method comes with limitations, improvements are continuously made, all with the aim to truly understand the role that neuroglia play in health and disease.
Collapse
Affiliation(s)
- Janine Doorduin
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Cao H, Fu L, Liu D, Baranova A, Zhang F. Mendelian randomization analysis of causal and druggable circulating inflammatory proteins in schizophrenia. Front Psychiatry 2024; 15:1465291. [PMID: 39544374 PMCID: PMC11560794 DOI: 10.3389/fpsyt.2024.1465291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024] Open
Abstract
Background Schizophrenia (SZ) is a severe mental disorder with complex origins. Observational studies suggested that inflammatory factors may play a role in the pathophysiology of SZ and we aim to investigate the potential genetic connection between them by examining the causal impact of circulating inflammatory proteins on SZ. Methods We utilized Mendelian randomization (MR) analysis to assess the causal relationship between circulating inflammatory proteins and SZ and the GWAS summary datasets were sourced from public databases. The SZ dataset comprised 74,776 cases and 101,023 controls, while the summary results for 91 plasma proteins in 14,824 participants were obtained through the Olink Target platform. Moreover, to identify and evaluate potential drug targets, we searched the Drug-Gene Interaction Database (DGIdb). Results The results of the MR study confirmed that nine inflammatory proteins had a causal effect on SZ. Among these proteins, IL1A (OR: 0.93), TNFB (OR: 0.94), TNFSF14 (OR: 0.96), and CD40 (OR: 0.95) exhibited protective effects against SZ. Conversely, CCL23 (OR: 1.04), CCL19 (OR: 1.04), 4EBP1 (OR: 1.06), TWEAK (OR: 1.08), and DNER (OR: 1.10) were associated with an increased risk of SZ. The MR-Egger and weighted median methods also supported the direction of these effects. According to the Gene-Drug analysis, LTA, IL1A, CD40, and 4EBP1 can serve as drug targets. Conclusions Our study established causal relationships between circulating inflammatory proteins and SZ. It may be beneficial to personalize the treatment of SZ by incorporating inflammation management into the treatment regimen.
Collapse
Affiliation(s)
- Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Li Fu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongming Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, United States
- Research Centre for Medical Genetics, Moscow, Russia
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Yesilkaya HU, Chen X, Watford L, McCoy E, Genc I, Du F, Ongur D, Yuksel C. Poor Self-Reported Sleep is Associated with Prolonged White Matter T2 Relaxation in Psychotic Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601887. [PMID: 39005452 PMCID: PMC11244968 DOI: 10.1101/2024.07.03.601887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Schizophrenia (SZ) and bipolar disorder (BD) are characterized by white matter (WM) abnormalities, however, their relationship with illness presentation is not clear. Sleep disturbances are common in both disorders, and recent evidence suggests that sleep plays a critical role in WM physiology. Therefore, it is plausible that sleep disturbances are associated with impaired WM integrity in these disorders. To test this hypothesis, we examined the association of self-reported sleep disturbances with WM transverse (T2) relaxation times in patients with SZ spectrum disorders and BD with psychotic features. Methods 28 patients with psychosis (17 BD-I, with psychotic features and 11 SZ spectrum disorders) were included. Metabolite and water T2 relaxation times were measured in the anterior corona radiata at 4T. Sleep was evaluated using the Pittsburgh Sleep Quality Index. Results PSQI total score showed a moderate to strong positive correlation with water T2 (r = 0.64, p<0.001). Linear regressions showed that this association was specific to sleep disturbance but was not a byproduct of exacerbation in depressive, manic, or psychotic symptoms. In our exploratory analysis, sleep disturbance was correlated with free water percentage, suggesting that increased extracellular water may be a mechanism underlying the association of disturbed sleep and prolonged water T2 relaxation. Conclusion Our results highlight the connection between poor sleep and WM abnormalities in psychotic disorders. Future research using objective sleep measures and neuroimaging techniques suitable to probe free water is needed to further our insight into this relationship.
Collapse
Affiliation(s)
- Haluk Umit Yesilkaya
- McLean Hospital, Belmont, MA
- Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Xi Chen
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | | | | | | | - Fei Du
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Dost Ongur
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Cagri Yuksel
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Sun Y, Wu D, Yang X, Tang B, Xia C, Luo C, Gong Q, Lui S, Hu N. The associations of peripheral interleukin alterations and hippocampal subfield volume deficits in schizophrenia. Cereb Cortex 2024; 34:bhae308. [PMID: 39077921 DOI: 10.1093/cercor/bhae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
The hippocampus is one of the brain regions most vulnerable to inflammatory insults, and the relationships between peripheral inflammation and hippocampal subfields in patients with schizophrenia remain unclear. In this study, forty-six stably medicated patients with schizophrenia and 48 demographically matched healthy controls (HCs) were recruited. The serum levels of IL - 1β, IL-6, IL-10, and IL-12p70 were measured, and 3D high-resolution T1-weighted magnetic resonance imaging was performed. The IL levels and hippocampal subfield volumes were both compared between patients and HCs. The associations of altered IL levels with hippocampal subfield volumes were assessed in patients. Patients with schizophrenia demonstrated higher serum levels of IL-6 and IL-10 but lower levels of IL-12p70 than HCs. In patients, the levels of IL-6 were positively correlated with the volumes of the left granule cell layer of the dentate gyrus (GCL) and cornu Ammonis (CA) 4, while the levels of IL-10 were negatively correlated with the volumes of those subfields. IL-6 and IL-10 might have antagonistic roles in atrophy of the left GCL and CA4. This suggests a complexity of peripheral cytokine dysregulation and the potential for its selective effects on hippocampal substructures, which might be related to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Yuan Sun
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Dongsheng Wu
- Department of Radiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 18, Section 3, South Renmin Road, Chengdu 610041, China
| | - Xiyue Yang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Biqiu Tang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Chao Xia
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Chunyan Luo
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Na Hu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| |
Collapse
|
12
|
Upthegrove R, Goldsmith DR. The psychoneuroimmunology of Psychosis: Peeking past the clouds of Heterogeneity: Editorial. Brain Behav Immun 2024; 119:709-712. [PMID: 38670242 DOI: 10.1016/j.bbi.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024] Open
Affiliation(s)
- Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham UK; Birmingham Early Intervention Service, Birmingham Womens and Childrens NHS Foundation Trust.
| | - David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States
| |
Collapse
|