1
|
Meng H, He L, Chunyu H, Zhou Q, Wang J, Qu Q, Hai W, Zhang Y, Li B, Zhang M, Chen S. 18F-DPA714 PET/MRI as a potential imaging tool for detecting possible antibody-negative autoimmune encephalitis: a prospective study. J Neurol 2024; 271:7592-7604. [PMID: 39294471 DOI: 10.1007/s00415-024-12690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND OBJECTIVES Conventional magnetic resonance imaging (MRI) used for detecting possible antibody-negative autoimmune encephalitis (AIE) often fails to meet the diagnostic requirements of this disease. Positron emission tomography (PET) with a translocator protein radioligand can help visualize microglia distribution density in inflammation-related diseases, thereby offering potentially incremental value to conventional MRI for the in vivo assessment of possible antibody-negative AIE. METHODS In this prospective study, 15 participants diagnosed with possible antibody-negative AIE and 10 healthy controls were enrolled (ClinicalTrials.gov: NCT05293405, dated March 15, 2022). All participants underwent hybrid 18F-DPA714 PET/MRI and evaluation for modified Rankin scale (mRS) score, clinical assessment scale for AIE (CASE), and appropriate antibodies. A positive finding was defined as the intensity of 18F-DPA714 uptake that was above a threshold of mean standardized uptake value ratio (SUVR) + two standard deviations of SUVR within the corresponding brain regions of healthy controls. RESULTS The positive detection rate of 18F-DPA714 PET for possible antibody-negative AIE was significantly higher than that of brain MRI (10/15 [67%] vs. 3/15 [20%]; P = 0.039). In addition, both the intensity and extent of 18F-DPA714 uptake were significantly associated with the CASE score (P = 0.002 and 0.001). Meanwhile, SUVR levels in the cerebellar region were significantly higher in patients with ataxia than in those without ataxia (P = 0.006). Furthermore, 18F-DPA714 uptake decreased in 5/10 [50%] patients who underwent follow-up PET/MRI, which mirrored their symptom relief. CONCLUSION 18F-DPA714 PET demonstrated its potentially incremental value to conventional MRI for detecting possible antibody-negative AIE.
Collapse
Affiliation(s)
- Huanyu Meng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lu He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Hangxing Chunyu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qinming Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jin Wang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Qu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi, China
| | - Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi, China.
| | - Sheng Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Department of Neurology, Xinrui Hospital, Wuxi, China.
| |
Collapse
|
2
|
Zhang M, Meng H, Zhou Q, Chunyu H, He L, Meng H, Wang H, Wang Y, Sun C, Xi Y, Hai W, Huang Q, Li B, Chen S. Microglial Activation Imaging Using 18F-DPA-714 PET/MRI for Detecting Autoimmune Encephalitis. Radiology 2024; 310:e230397. [PMID: 38441089 DOI: 10.1148/radiol.230397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Background Translocator protein (TSPO) PET has been used to visualize microglial activation in neuroinflammation and is a potential imaging tool for detecting autoimmune encephalitis (AIE). Purpose To compare the detection rate between TSPO radioligand fluorine 18 (18F) DPA-714 PET and conventional MRI and assess the relationship between 18F-DPA-714 uptake and clinical features in participants with AIE. Materials and Methods Healthy volunteers and patients with AIE were enrolled in this prospective study between December 2021 and April 2023. All participants underwent hybrid brain 18F-DPA-714 PET/MRI and antibody testing. Modified Rankin scale scoring and AIE-related symptoms were assessed in participants with AIE. Positive findings were defined as intensity of 18F-DPA-714 uptake above a threshold of the mean standardized uptake value ratio (SUVR) plus 2 SD inside the corresponding brain regions of healthy controls. The McNemar test was used to compare the positive detection rate between the two imaging modalities; the independent samples t test was used to compare continuous variables; and correlation with Bonferroni correction was used to assess the relationship between 18F-DPA-714 uptake and clinical features. Results A total of 25 participants with AIE (mean age, 39.24 years ± 19.03 [SD]) and 10 healthy controls (mean age, 28.70 years ± 5.14) were included. The positive detection rate of AIE was 72% (18 of 25) using 18F-DPA-714 PET compared to 44% (11 of 25) using conventional MRI, but the difference was not statistically significant (P = .065). Participants experiencing seizures exhibited significantly higher mean SUVR in the entire cortical region than those without seizures (1.23 ± 0.21 vs 1.15 ± 0.18; P = .003). Of the 13 participants with AIE who underwent follow-up PET/MRI, 11 (85%) demonstrated reduced uptake of 18F-DPA-714 accompanied by relief of symptoms after immunosuppressive treatment. Conclusion 18F-DPA-714 PET has potential value in supplementing MRI for AIE detection. Clinical trial registration no. NCT05293405 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Zaharchuk in this issue.
Collapse
Affiliation(s)
- Min Zhang
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Huanyu Meng
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Qinming Zhou
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Hangxing Chunyu
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Lu He
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Hongping Meng
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Hanzhong Wang
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Yue Wang
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Chenwei Sun
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Yun Xi
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Wangxi Hai
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Qiu Huang
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Biao Li
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| | - Sheng Chen
- From the Departments of Nuclear Medicine (M.Z., H.C., Hongping Meng, Y.W., C.S., Y.X., W.H., B.L.) and Neurology (Huanyu Meng, Q.Z., L.H., S.C.), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai, China; Shanxi Medical University-Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan, China (M.Z., B.L.); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (H.W., Q.H.); and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China (S.C.)
| |
Collapse
|
3
|
Fazlollahi A, Zahmatyar M, Shamekh A, Motamedi A, Seyedi F, Seyedmirzaei H, Mousavi SE, Nejadghaderi SA, Sullman MJM, Kolahi AA, Arshi S, Safiri S. Electroencephalographic findings post-COVID-19 vaccination: A systematic review of case reports and case series. Rev Med Virol 2023; 33:e2484. [PMID: 37807809 DOI: 10.1002/rmv.2484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
A number of different neurological complications have been reported following vaccination against the coronavirus disease 2019 (COVID-19). Electroencephalogram (EEG) is one of the modalities used to evaluate the neurological complications of diseases. The aim of the present study was to identify the EEG changes in participants vaccinated against COVID-19. PubMed, Scopus, Web of Science, medRxiv, and Google Scholar were searched up to 1 September 2022, with terms related to COVID-19 vaccines, EEG, neurological signs/symptoms, or neurological disorders. All case reports and case series were included if the participants had received at least one dose of a COVID-19 vaccine and a post vaccination EEG report was also reported. We used the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for case reports and case series to appraise the methodological quality of the included studies. Thirty-one studies were included, which were comprised of 24 case reports and seven case series and a total of 36 participants. Generalised slowing and non-convulsive focal status epilepticus were the most common EEG findings post-COVID-19 vaccination. The most frequent symptoms were headache, fatigue, generalised weakness, and vomiting. In addition, the most common signs were encephalopathy, post-ictal phases, and confusion. Encephalitis, acute disseminated encephalomyelitis, and post-vaccinal encephalopathy were the most commonly diagnosed adverse events. Furthermore, most of the imaging studies appeared normal. The EEG reports mainly showed background slowing and epileptiform discharges, encephalitis, encephalopathies, and demyelinating disorders. Future studies with larger samples and more vaccine types may help to further unravel the potential neurological effects of COVID-19 vaccinations on recipients.
Collapse
Affiliation(s)
- Asra Fazlollahi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Zahmatyar
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Motamedi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Seyedi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ehsan Mousavi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Aria Nejadghaderi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahnam Arshi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safiri
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|