1
|
Abela AR, Browne CJ, Sargin D, Prevot TD, Ji XD, Li Z, Lambe EK, Fletcher PJ. Median raphe serotonin neurons promote anxiety-like behavior via inputs to the dorsal hippocampus. Neuropharmacology 2020; 168:107985. [PMID: 32035145 DOI: 10.1016/j.neuropharm.2020.107985] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 11/16/2022]
Abstract
Anxiety disorders may be mediated in part by disruptions in serotonin (5-hydroxytryptamine, 5-HT) system function. Behavioral measures of approach-avoidance conflict suggest that serotonin neurons within the median raphe nucleus (MRN) promote an anxiogenic state, and some evidence indicates this may be mediated by serotonergic signaling within the dorsal hippocampus. Here, we test this hypothesis using an optogenetic approach to examine the contribution of MRN 5-HT neurons and 5-HT innervation of the dorsal hippocampus (dHC) to anxiety-like behaviours in female mice. Mice expressing the excitatory opsin ChR2 were generated by crossing the ePet-cre serotonergic cre-driver line with the conditional Ai32 ChR2 reporter line, resulting in selective expression of ChR2 in 5-HT neurons. Electrophysiological recordings confirmed that this approach enabled reliable optogenetic stimulation of MRN 5-HT neurons, and this stimulation produced downstream 5-HT release in the dHC as measured by in vivo microdialysis. Optogenetic stimulation of the MRN elicited behavioral responses indicative of an anxiogenic effect in three behavioural tests: novelty-suppressed feeding, marble burying and exploration on the elevated-plus maze. These effects were shown to be behaviourally-specific. Stimulation of 5-HT terminals in the dHC recapitulated the anxiety-like behaviour in the novelty-suppressed feeding and marble burying tests. These results show that activation of 5-HT efferents from the MRN rapidly induces expression of anxiety-like behaviour, in part via projections to the dHC. These findings reveal an important neural circuit implicated in the expression of anxiety in female mice.
Collapse
Affiliation(s)
- Andrew R Abela
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada; Dept. of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Caleb J Browne
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada; Dept. of Psychology, University of Toronto, Toronto, ON, Canada; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Derya Sargin
- Dept. of Physiology, University of Toronto, Toronto, ON, Canada; Dept. of Psychology, University of Calgary, Calgary, AB, Canada
| | - Thomas D Prevot
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Xiao Dong Ji
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Zhaoxia Li
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Evelyn K Lambe
- Dept. of Psychiatry, University of Toronto, Toronto, ON, Canada; Dept. of Physiology, University of Toronto, Toronto, ON, Canada; Dept. of Obstetrics and Gynaecology, University of Toronto, ON, Canada
| | - Paul J Fletcher
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada; Dept. of Psychiatry, University of Toronto, Toronto, ON, Canada; Dept. of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Andrade TGCSD, Silva JVDS, Batistela MF, Frei F, Sant'Ana AB. Interaction between estradiol and 5-HT 1A receptors in the median raphe nucleus on acquisition of aversive information and association to the context in ovariectomized rats. Neurobiol Stress 2017. [PMID: 28626786 PMCID: PMC5470534 DOI: 10.1016/j.ynstr.2017.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The median raphe nucleus (MRN) is related to stress resistance and defensive responses, a crucial source of serotonergic neurons that project to prosencephalic structures related to stress and anxiety. Estrogen receptors were identified in this mesencephalic structure. It is possible that the estrogen action is related to serotonin effect on somatodendritic 5-HT1A receptors, inhibiting the function of serotonergic neurons and thus preventing of the stress effect and inducing anxiolysis. So, in order to evaluate these aspects, female Wistar rats were ovariectomized and 21 days later were given a direct microinjection of estradiol benzoate (EB) (1200 ng) into the MRN, preceded by microinjections of saline or WAY100.635 (100 ng), a 5-HT1A receptor antagonist. Immediately after the two microinjections, the ovariectomized rats were conditioned with an aversive event (foot shock) session in a Skinner box. Twenty-four hours later, they were exposed to the same context in a test session for 5 min for behavioral assessment: freezing, rearing, locomotion, grooming, and autonomic responses (fecal boluses and micturition). EB microinjection in the MRN prior to the exposure of animals to the foot shocks in the conditioning session did not alter their behavior in this session, but neutralized the association of the aversive experience to the context: there was a decrease in the expression of freezing and an increased rearing activity in the test session. This effect was reversed by prior microinjection of WAY100.635. In conclusion, EB acted on serotonergic neurons in the MRN of the ovariectomized rats, impairing the association of the aversive experience to the context, by co-modulating the functionality of somatodendritic 5-HT1A.
Collapse
Affiliation(s)
| | | | | | - Fernando Frei
- UNESP - Univ Estadual Paulista, FCL, Department of Biological Science, Avenida Dom Antonio, 2100, 19.806-900 Assis, São Paulo, Brazil
| | | |
Collapse
|
3
|
Abstract
Although the role of the median raphe nucleus (MRN) in the regulation of anxiety has received less attention than that of the dorsal raphe nucleus (DRN) there is substantial evidence supporting this function. Reported results with different animal models of anxiety in rats show that whereas inactivation of serotonergic neurons in the MRN causes anxiolysis, the stimulation of the same neurons is anxiogenic. In particular, studies using the elevated T-maze comparing serotonergic interventions in the MRN and in the DRN indicate that the former affect only the inhibitory avoidance task, which has been related to generalized anxiety. In contrast, similar operations in the DRN change both the inhibitory avoidance and the one-way escape task, the latter being representative of panic disorder. Simultaneous injections of 5-HT-acting drugs in the MRN and in the dorsal hippocampus (DH) suggest that the MRN-DH pathway mediates the regulatory function of the MRN in anxiety. Overall, the results discussed in this review point to a relevant role of the MRN in the regulation of anxiety, but not panic, through the 5-HT pathway that innervates the DH.
Collapse
Affiliation(s)
- Telma Gcs Andrade
- 1Department of Biological Science, São Paulo State University-UNESP, Assis, Brazil
| | | | | |
Collapse
|
4
|
Liu J, Bisschop PH, Eggels L, Foppen E, Fliers E, Zhou JN, Kalsbeek A. Intrahypothalamic estradiol modulates hypothalamus-pituitary-adrenal-axis activity in female rats. Endocrinology 2012; 153:3337-44. [PMID: 22562172 DOI: 10.1210/en.2011-2176] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen plays an important role in the regulation of the hypothalamus-pituitary-adrenal (HPA)-axis, but the neuroendocrine pathways and the role of estrogen receptor (ER) subtypes involved in specific aspects of this interaction remain unknown. In a first set of experiments, we administered estradiol (E2) intravenously, intracerebroventricularly, and by intrahypothalamic microdialysis to ovariectomized rats to measure plasma corticosterone (CORT) concentrations from carotid artery blood. Systemic infusion of E2 did not increase plasma CORT, but intracerebroventricular E2 induced a 3-fold CORT increase (P = 0.012). Local E2 infusions in the hypothalamic paraventricular nucleus (PVN) significantly increased plasma CORT (P < 0.001). A similar CORT increase was seen after PVN infusion of the ERα agonist propylpyrazoletriol, whereas the ERβ agonist diarylpropiolnitrile had no effect. In a second set of experiments, we investigated whether E2 modulates the HPA-axis response to acute stress by administering E2 agonists or its antagonist ICI 182,780 into the PVN during restraint stress exposure. After 30 min of stress exposure, plasma CORT had increased 5.0-fold (P < 0.001). E2 and propylpyrazoletriol administration in the PVN enhanced the stress-induced plasma CORT increase (8-fold vs. baseline), whereas ICI 182,780 and diarylpropiolnitrile reduced it, as compared with both E2 and vehicle administration in the PVN. In conclusion, central E2 modulates HPA-axis activity both in the basal state and during restraint stress. In the basal condition, the stimulation is mediated by ERα-sensitive neurons, whereas during stress, it is mediated by both ERα and ERβ.
Collapse
Affiliation(s)
- J Liu
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, Anhui, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
5
|
Mansur SS, Terenzi MG, Neto JM, Faria MS, Paschoalini MA. Changes in food intake and anxiety-like behaviors after clonidine injected into the median raphe nucleus. Behav Brain Res 2010; 212:71-7. [DOI: 10.1016/j.bbr.2010.03.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
|