1
|
Lima OJF, Ribeiro JDS, Vasconcelos JDC, Ferraz MFI, Silva CEDMTDRE, Barros WMA, Vieira GR, David MCMM, Matos RJB. Environmental enrichment changes the effects of prenatal and postnatal undernutrition on memory, anxiety traits, Bdnf and TrkB expression in the hippocampus of male adult rats. Behav Brain Res 2024; 460:114817. [PMID: 38122904 DOI: 10.1016/j.bbr.2023.114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Environmental factors such as undernutrition and environmental enrichment can promote changes in the molecular and behavioural mechanisms related to cognition. Herein, we investigated the effect of enriched environment stimulation in rats that were malnourished in the pre- and postnatal periods on changes in the gene expression of brain-derived neurotrophic factor and its receptor in the hippocampus, as well as on anxiety traits and memory. Early undernutrition promoted weight reduction, increased the risk analysis, reduced permanence in the open arm of the elevated plus-maze and induced a reduction in the gene expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B. However, exposure to an enriched environment from 30 to 90 days' old maintained the malnourished phenotype, leading to weight reduction in the control group. In addition, the enriched environment did not alter the risk assessment in the undernourished group, but it did increase the frequency of labyrinth entries. Sixty-day exposure to the enriched environment resulted in a reversal in the gene expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus of malnourished rats and favoured of long-term memory in the object recognition test in the open-field. These results suggest that an enriched environment may have a protective effect in adult life by inducing changes in long-term memory and anxiety traits in animals that were undernourished in early life. Furthermore, reversing these effects of undernutrition involves mechanisms linked to the molecular signalling of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus.
Collapse
Affiliation(s)
- Odair José Farias Lima
- Physical Education and Sports Science Nucleus, Academic Center of Vitória, Federal University of Pernambuco, Brazil
| | | | | | | | | | - Waleska Maria Almeida Barros
- Multicenter Postgraduate Program in Physiological Sciences, Academic Center of Vitória, Federal University of Pernambuco, Brazil
| | - Gilberto Ramos Vieira
- Postgraduate Program in Physical Education, Health Sciences Center, Federal University of Pernambuco, Brazil
| | | | | |
Collapse
|
2
|
de Oliveira-Silva J, Lisboa PC, Lotufo-Denucci B, Fraga M, de Moura EG, Nunes FC, Ribeiro-Carvalho A, Filgueiras CC, Abreu-Villaça Y, Manhães AC. Maternal protein restriction during the lactation period disrupts the ontogenetic development of behavioral traits in male Wistar rat offspring. J Dev Orig Health Dis 2023:1-12. [PMID: 37185045 DOI: 10.1017/s2040174423000107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Neonatal undernutrition in rats results in short- and long-term behavioral and hormonal alterations in the offspring. It is not clear, however, whether these effects are present since the original insult or if they develop at some specific age later in life. Here, we assessed the ontogenetic profile of behavioral parameters associated with anxiety, exploration and memory/learning of Wistar rat offspring that were subjected to protein malnutrition during lactation. Dams and respective litters were separated into two groups: (1) protein-restricted (PR), which received a hypoproteic chow (8% protein) from birth to weaning [postnatal day (PN) 21]; (2) control (C), which received normoproteic chow. Offspring's behaviors, corticosterone, catecholamines, T3 and T4 levels were assessed at PN21 (weaning), PN45 (adolescence), PN90 (young adulthood) or PN180 (adulthood). PR offspring showed an age-independent reduction in the levels of anxiety-like behaviors in the Elevated Plus Maze and better memory performance in the Radial Arm Water Maze. PR offspring showed peak exploratory activity in the Open Field earlier in life, at PN45, than C, which showed theirs at PN90. Corticosterone was reduced in PR offspring, particularly at young adulthood, while catecholamines were increased at weaning and adulthood. The current study shows that considerable age-dependent variations in the expression of the observed behaviors and hormonal levels exist from weaning to adulthood in rats, and that protein restriction during lactation has complex variable-dependent effects on the ontogenesis of the assessed parameters.
Collapse
Affiliation(s)
- Juliana de Oliveira-Silva
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Patrícia C Lisboa
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Bruna Lotufo-Denucci
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Mabel Fraga
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Egberto G de Moura
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Fernanda C Nunes
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela 1470 - Patronato, São Gonçalo, RJ, 24435-005, Brazil
| | - Cláudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| |
Collapse
|
3
|
Monteiro S, Nejad YS, Aucoin M. Perinatal diet and offspring anxiety: A scoping review. Transl Neurosci 2022; 13:275-290. [PMID: 36128579 PMCID: PMC9449687 DOI: 10.1515/tnsci-2022-0242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Health behaviors during pregnancy have an impact on the developing offspring. Dietary factors play a role in the development of mental illness: however, less is known about the impact of diet factors during pre-conception, gestation, and lactation on anxiety levels in offspring. This scoping review sought to systematically map the available research involving human and animal subjects to identify nutritional interventions which may have a harmful or protective effect, as well as identify gaps. Studies investigating an association between any perinatal diet pattern or diet constituent and offspring anxiety were included. The number of studies reporting an association with increased or decreased levels of anxiety were counted and presented in figures. A total of 55,914 results were identified as part of a larger scoping review, and 120 articles met the criteria for inclusion. A greater intake of phytochemicals and vitamins were associated with decreased offspring anxiety whereas maternal caloric restriction, protein restriction, reduced omega-3 consumption, and exposure to a high fat diet were associated with higher levels of offspring anxiety. Results were limited by a very large proportion of animal studies. High quality intervention studies involving human subjects are warranted to elucidate the precise dietary factors or constituents that modulate the risk of anxiety in offspring.
Collapse
Affiliation(s)
- Sasha Monteiro
- Department of Research and Clinical Epidemiology, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON, M2K 1E2, Canada
| | - Yousef Sadat Nejad
- Department of Research and Clinical Epidemiology, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON, M2K 1E2, Canada
| | - Monique Aucoin
- Department of Research and Clinical Epidemiology, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON, M2K 1E2, Canada
| |
Collapse
|
4
|
Tactile stimulation during development alters the neuroanatomical organization of the optic nerve in normal rats. Exp Brain Res 2016; 234:1737-46. [DOI: 10.1007/s00221-016-4586-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
|
5
|
Besson AA, Lagisz M, Senior AM, Hector KL, Nakagawa S. Effect of maternal diet on offspring coping styles in rodents: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2015; 91:1065-1080. [DOI: 10.1111/brv.12210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 06/07/2015] [Accepted: 06/18/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Anne A. Besson
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Malgorzata Lagisz
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, Biological Science Building; University of New South Wales; Sydney 2052 New South Wales Australia
| | - Alistair M. Senior
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
- Charles Perkins Centre, The University of Sydney; Johns Hopkins Drive, Sydney 2009 New South Wales Australia
| | - Katie L. Hector
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Shinichi Nakagawa
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, Biological Science Building; University of New South Wales; Sydney 2052 New South Wales Australia
| |
Collapse
|
6
|
Belluscio LM, Berardino BG, Ferroni NM, Ceruti JM, Cánepa ET. Early protein malnutrition negatively impacts physical growth and neurological reflexes and evokes anxiety and depressive-like behaviors. Physiol Behav 2014; 129:237-54. [PMID: 24607933 DOI: 10.1016/j.physbeh.2014.02.051] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/27/2014] [Indexed: 11/30/2022]
Abstract
Malnutrition is a worldwide problem affecting millions of unborn and young children during the most vulnerable stages of their development. In humans, poor maternal nutrition is a major cause of intrauterine growth restriction which is associated with an increased risk of perinatal mortality and long-term morbidity. In addition, intrauterine growth restriction correlates with neurodevelopmental delays and alterations of brain structure and neurochemistry. While there is no doubt that maternal malnutrition is a principal cause of perturbed development of the fetal brain and that all nutrients have certain influence on brain maturation, proteins appear to be the most critical for the development of neurological functions. In the present study we assessed male and female mouse offspring, born to dams protein restricted during pregnancy and lactation, in physical growth and neurobehavioral development and also in social interaction, motivation, anxiety and depressive behaviors. Moreover, we evaluate the impact of the low protein diet on dams in relation to their maternal care and anxiety-related behavior given that these clearly affect pups development. We observed that maternal protein restriction during pregnancy and lactation delayed the physical growth and neurodevelopment of the offspring in a sex-independent manner. In addition, maternal undernutrition negatively affected offspring's juvenile social play, motivation, exploratory activity and risk assessment behaviors. These findings show that protein restriction during critical periods of development detrimentally program progeny behavior.
Collapse
Affiliation(s)
- Laura M Belluscio
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, 1428 Ciudad de Buenos Aires, Argentina
| | - Bruno G Berardino
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, 1428 Ciudad de Buenos Aires, Argentina
| | - Nadina M Ferroni
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, 1428 Ciudad de Buenos Aires, Argentina
| | - Julieta M Ceruti
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, 1428 Ciudad de Buenos Aires, Argentina
| | - Eduardo T Cánepa
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, 1428 Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
7
|
Fraga MC, de Moura EG, da Silva Lima N, Lisboa PC, de Oliveira E, Silva JO, Claudio-Neto S, Filgueiras CC, Abreu-Villaça Y, Manhães AC. Anxiety-like, novelty-seeking and memory/learning behavioral traits in male Wistar rats submitted to early weaning. Physiol Behav 2014; 124:100-6. [DOI: 10.1016/j.physbeh.2013.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/25/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
|
8
|
Huber RC, Kolb AF, Lillico S, Carlisle A, Sandøe P, Sørensen DB, Remuge L, Whitelaw BCA, Olsson AIS. Behaviour of postnatally growth-impaired mice during malnutrition and after partial weight recovery. Nutr Neurosci 2013; 16:125-34. [DOI: 10.1179/1476830512y.0000000038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Behavioral effects of combined environmental enrichment and chronic nicotine administration in male NMRI mice. Physiol Behav 2013; 114-115:65-76. [DOI: 10.1016/j.physbeh.2013.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 09/27/2012] [Accepted: 03/12/2013] [Indexed: 12/18/2022]
|
10
|
Alamy M, Bengelloun WA. Malnutrition and brain development: an analysis of the effects of inadequate diet during different stages of life in rat. Neurosci Biobehav Rev 2012; 36:1463-80. [PMID: 22487135 DOI: 10.1016/j.neubiorev.2012.03.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 03/19/2012] [Accepted: 03/25/2012] [Indexed: 12/22/2022]
Abstract
Protein malnutrition or undernutrition can result in abnormal development of the brain. Depending on type, age at onset and duration, different structural and functional deficits can be observed. In the present review, we discuss the neuroanatomical, behavioral, neurochemical and oxidative status changes associated with protein malnutrition or undernutrition at different ages during prenatal and immediately postnatal periods as well as in adult rat. Analysis of all data suggests that protein malnutrition as well as undernutrition induced impaired learning and retention when imposed during the immediately postnatal period and in adulthood, whereas hyperactivity including increased impulsiveness and greater reactivity to aversive stimuli occurred when malnutrition or undernutrition was imposed either pre or postnatally. This general state of hyperreactivity may be linked essentially to an alteration in dopaminergic system. Hence, the present review shows that in spite of the attention devoted in the literature to prenatal effects, cognitive deficits are more serious following malnutrition or undernutrition after birth. We thus clearly establish a special vulnerability to malnutrition after weaning in rats.
Collapse
Affiliation(s)
- Meryem Alamy
- Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco
| | | |
Collapse
|
11
|
Fraga MC, Moura EG, Silva JO, Bonomo IT, Filgueiras CC, Abreu-Villaça Y, Passos MCF, Lisboa PC, Manhães AC. Maternal prolactin inhibition at the end of lactation affects learning/memory and anxiety-like behaviors but not novelty-seeking in adult rat progeny. Pharmacol Biochem Behav 2011; 100:165-73. [PMID: 21777608 DOI: 10.1016/j.pbb.2011.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 12/13/2022]
Abstract
Maternal hypoprolactinemia at the end of lactation in rats reduces milk production and is associated with offspring's malnutrition. Since malnutrition during development is also known to have long lasting effects on cognition and emotion, in the present study we tested the hypothesis that maternal hypoprolactinemia, induced by bromocriptine treatment, at the end of the lactating period affects memory/learning, novelty-seeking and anxiety-like behaviors in adult male Wistar rats using, respectively, the radial arm water maze (RAWM), the hole board (HB) arena and the elevated plus-maze (EPM). We also analyzed serum corticosterone and thyroid hormone levels at postnatal day (PN) 21. Lactating dams were treated with bromocriptine (BRO, 1mg twice a day, inhibiting prolactin) or saline from PN19 to 21 (the last 3 days of lactation). BRO offspring had hypercorticosteronemia and hypothyroidism at PN21. In the RAWM, reductions in latency observed in CON rats were initially more accentuated than in BRO ones. By the end of the testing period, latencies became similar between groups. No difference was observed between groups regarding the number of nose-pokes in the HB. In the EPM, BRO rats stayed less time in and had fewer entries into the open-arms than CON ones. This pattern of results indicates that maternal bromocriptine treatment at the end of the lactating period results in poorer memory/learning performance and in higher levels of anxiety-like behavior in the adult offspring, demonstrating that even a relatively short period of malnutrition during development can have long lasting detrimental effects regarding cognition and emotion.
Collapse
Affiliation(s)
- Mabel C Fraga
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|