1
|
López-Gutiérrez MF, Mejía-Chávez S, Alcauter S, Portillo W. The neural circuits of monogamous behavior. Front Neural Circuits 2022; 16:978344. [PMID: 36247729 PMCID: PMC9559370 DOI: 10.3389/fncir.2022.978344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The interest in studying the neural circuits related to mating behavior and mate choice in monogamous species lies in the parallels found between human social structure and sexual behavior and that of other mammals that exhibit social monogamy, potentially expanding our understanding of human neurobiology and its underlying mechanisms. Extensive research has suggested that social monogamy, as opposed to non-monogamy in mammals, is a consequence of the neural encoding of sociosensory information from the sexual partner with an increased reward value. Thus, the reinforced value of the mate outweighs the reward value of mating with any other potential sexual partners. This mechanism reinforces the social relationship of a breeding pair, commonly defined as a pair bond. In addition to accentuated prosocial behaviors toward the partner, other characteristic behaviors may appear, such as territorial and partner guarding, selective aggression toward unfamiliar conspecifics, and biparental care. Concomitantly, social buffering and distress upon partner separation are also observed. The following work intends to overview and compare known neural and functional circuits that are related to mating and sexual behavior in monogamous mammals. We will particularly discuss reports on Cricetid rodents of the Microtus and Peromyscus genus, and New World primates (NWP), such as the Callicebinae subfamily of the titi monkey and the marmoset (Callithrix spp.). In addition, we will mention the main factors that modulate the neural circuits related to social monogamy and how that modulation may reflect phenotypic differences, ultimately creating the widely observed diversity in social behavior.
Collapse
Affiliation(s)
| | | | | | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
2
|
Ladjimi MH, Barbouche R, Ben Rhouma K, Sakly M, Tebourbi O, Save E. Effects of PACAP-38 and an analog, acetyl-[Ala15, Ala20] PACAP-38-propylamide, on memory consolidation in the detection of spatial novelty task in rats. Brain Res 2020; 1739:146858. [DOI: 10.1016/j.brainres.2020.146858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022]
|
3
|
Wang H, Yang J, Lv C, Huai R, Li Y. Intercollicular nucleus electric stimulation encoded “walk forward” commands in pigeons. ANIM BIOL 2018. [DOI: 10.1163/15707563-17000053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The bio-robot research field is growing. Robo-pigeons have been successfully programmed to turn left or right; however, a satisfactory method of commanding a robo-pigeon to walk forward is still lacking. This problem has become a roadblock to progress in bio-robot research and applications. In mammals, the midbrain periaqueductal gray region (PAG) plays a key role in mediating defensive reactions in response to fear and anxiety. The avian intercollicular nucleus (ICo) is thought to correspond to the PAG. In this study, we found that microstimulating the ICo could successfully induce a robo-pigeon to walk forward. Compared with stimulation of the previously used archistriatum, the response time was considerably shorter and the behavior accuracy significantly higher. This paper describes in detail the process of controlling a robo-pigeon such that it walks forward and backward along a prescribed straight line. From the results, we draw the conclusion that the ICo is suitable for prompting the “walk forward” order in robo-pigeons.
Collapse
Affiliation(s)
- Hui Wang
- Shandong Provincial Key Laboratory of Robotics and Intelligent Technology, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao, Shandong, P.R. China
| | - Junqing Yang
- Shandong Provincial Key Laboratory of Robotics and Intelligent Technology, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao, Shandong, P.R. China
| | - Changzhi Lv
- Shandong Provincial Key Laboratory of Robotics and Intelligent Technology, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao, Shandong, P.R. China
| | - Ruituo Huai
- Shandong Provincial Key Laboratory of Robotics and Intelligent Technology, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao, Shandong, P.R. China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Robotics and Intelligent Technology, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao, Shandong, P.R. China
| |
Collapse
|
4
|
Zarrabian S, Nasehi M, Farrahizadeh M, Zarrindast MR. The role of CA3 GABA B receptors on anxiolytic-like behaviors and avoidance memory deficit induced by D-AP5 with respect to Ca 2+ ions. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:515-524. [PMID: 28800869 DOI: 10.1016/j.pnpbp.2017.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/21/2023]
Abstract
Glutamatergic and GABAergic systems play key roles in the hippocampus and affect the pathogenesis of anxiety- and memory-related processes. Some investigations have assessed the role of balancing the function of these two systems in different areas of the central nervous system (CNS) as an approach to manage the related disorders. We investigated the anxiety and avoidance memory states using the test-retest protocol in the elevated plus maze to understand the role of GABAB receptors (GABABRs) in relation to the NMDA receptor blockade by D-AP5 (an NMDA receptor antagonist). Also, we examined the function of Ca2+ ions by blocking its entrance to the cell using SKF96365 (a Ca2+ channel blocker). The drugs were injected into the CA3 region before the test. Our data showed that D-AP5 induced anxiolytic-like behaviors and impaired the avoidance memory. Injection of baclofen (a GABABR agonist), but not phaclofen (a GABABR antagonist) induced anxiolytic-like behaviors. Neither baclofen nor phaclofen altered avoidance memory-related behaviors. When baclofen was injected before D-AP5, it potentiated the anxiolytic-like behaviors induced by D-AP5, but counteracted its effect on avoidance memory. Phaclofen pretreatment attenuated D-AP5-induced anxiolytic-like behaviors, but potentiated its effect on avoidance memory. The effect of baclofen application before D-AP5 on anxiety and phaclofen application before D-AP5 on avoidance memory at the heist doses were accompanied by a decrease in locomotion. The application of SKF96365 did not alter anxiety-like behaviors but induced avoidance memory impairment. SKF96365 application before the combination of baclofen and D-AP5 counteracted the effects produced by the combination of baclofen and D-AP5 on anxiety and memory states. Our findings showed that the CA3 GABABRs had a critical role in anxiolytic-like behaviors and avoidance memory deficit induced by D-AP5 and confirmed the role of Ca2+ ions in the observed results.
Collapse
Affiliation(s)
- Shahram Zarrabian
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran.
| | - Maryam Farrahizadeh
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Medical Genomics Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Souza RR, Carobrez AP. Acquisition and expression of fear memories are distinctly modulated along the dorsolateral periaqueductal gray axis of rats exposed to predator odor. Behav Brain Res 2016; 315:160-7. [PMID: 27522018 DOI: 10.1016/j.bbr.2016.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 12/27/2022]
Abstract
The dorsolateral region of the midbrain periaqueductal gray (dlPAG) modulates both innate and conditioned fear responses. However, the contribution of the rostrocaudal portions of the dlPAG to defense reactions and aversive memories remains unclear. Here, we sought to investigate the effects of N-methyl-d-aspartate (NMDA) receptor blockade within rostral or caudal dlPAG of rats exposed to innate and learned fear to cat odor. For this, adult male Wistar rats were microinjected with the NMDA antagonist D-2-amino-5-phosphono-pentanoate (AP5; 3 or 6nmol/0.2μl) into the rostral or caudal dlPAG before and after the exposure to the cat odor or to the context paired with the predator odor. The results demonstrated that cat odor exposure induced unconditioned defensive behaviors as well as contextual fear. AP5 microinjected in the rostral dlPAG reduced the defensive responses to cat odor and impaired the acquisition, but not consolidation of contextual fear. On the other hand, AP5 infused within the caudal dlPAG promoted long-lasting reduction of contextual fear expression. Altogether, our data suggest that NMDA receptors mediate a functional dichotomy in the rostrocaudal axis of dlPAG regulating unconditioned and conditioned defensive reactions to predatory cues.
Collapse
Affiliation(s)
- Rimenez R Souza
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Antonio P Carobrez
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
6
|
Chen S, Zhou H, Guo S, Zhang J, Qu Y, Feng Z, Xu K, Zheng X. Optogenetics Based Rat-Robot Control: Optical Stimulation Encodes "Stop" and "Escape" Commands. Ann Biomed Eng 2015; 43:1851-64. [PMID: 25567506 DOI: 10.1007/s10439-014-1235-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 12/19/2014] [Indexed: 12/15/2022]
Abstract
Electric brain stimulation is frequently used in bio-robot control. However, one possible limitation of electric stimulation is the resultant wide range of influences that may lead to unexpected side-effects. Although there has been prior research done towards optogenetics based brain activation, there has not been much development regarding the comparisons between electric and optical methods of brain activation. In this study, we first encode "Stop" and "Escape" commands by optical stimulation in the dorsal periaqueductal grey (dPAG). The rats behavioral comparisons are then noted down under these two methods. The dPAG neural activity recorded during optical stimulation suggests rate and temporal coding mechanisms in behavioral control. The behavioral comparisons show that rats exhibit anxiety under the "Stop" command conveyed through both optical and electric methods. However, rats are able to recover more quickly from freezing only under optical "Stop" command. Under "Escape" commands, also conveyed through optical means, the rat would move with lessened urgency but the results are more stable. Moreover, c-Fos study shows the optical stimulation activates restricted range in midbrain: the optical stimulation affected only dPAG and its downstreams but electric stimulation activates both the upstream and downstream circuits, in which the glutamatergic neurons are largely occupied and play important role in "Stop" and "Escape" behavior controls. We conclude that optical stimulation is more suited for encoding "Stop" and "Escape" commands for rat-robot control.
Collapse
Affiliation(s)
- SiCong Chen
- Department of Biomedical Engineering, Key Laboratory of Ministry of Education, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Pavesi E, Canteras NS, Carobrez AP. Acquisition of Pavlovian fear conditioning using β-adrenoceptor activation of the dorsal premammillary nucleus as an unconditioned stimulus to mimic live predator-threat exposure. Neuropsychopharmacology 2011; 36:926-39. [PMID: 21209611 PMCID: PMC3077262 DOI: 10.1038/npp.2010.231] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present work, we sought to mimic the internal state changes in response to a predator threat by pharmacologically stimulating the brain circuit involved in mediating predator fear responses, and explored whether this stimulation would be a valuable unconditioned stimulus (US) in an olfactory fear conditioning paradigm (OFC). The dorsal premammillary nucleus (PMd) is a key brain structure in the neural processing of anti-predatory defensive behavior and has also been shown to mediate the acquisition and expression of anti-predatory contextual conditioning fear responses. Rats were conditioned by pairing the US, which was an intra-PMd microinjection of isoproterenol (ISO; β-adrenoceptor agonist), with amyl acetate odor-the conditioned stimulus (CS). ISO (10 and 40 nmol) induced the acquisition of the OFC and the second-order association by activation of β-1 receptors in the PMd. Furthermore, similar to what had been found for contextual conditioning to a predator threat, atenolol (β-1 receptor antagonist) in the PMd also impaired the acquisition and expression of OFC promoted by ISO. Considering the strong glutamatergic projections from the PMd to the dorsal periaqueductal gray (dPAG), we tested how the glutamatergic blockade of the dPAG would interfere with the OFC induced by ISO. Accordingly, microinjections of NMDA receptor antagonist (AP5, 6 nmol) into the dPAG were able to block both the acquisition, and partially, the expression of the OFC. In conclusion, we have found that PMd β-1 adrenergic stimulation is a good model to mimic predatory threat-induced internal state changes, and works as a US able to mobilize the same systems involved in the acquisition and expression of predator-related contextual conditioning.
Collapse
Affiliation(s)
- Eloisa Pavesi
- Departamento de Farmacologia, CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Newton S Canteras
- Departamento de Anatomia, ICB, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Antônio P Carobrez
- Departamento de Farmacologia, CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil,Departamento de Farmacologia, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900, Florianópolis, SC, Brazil, Tel: +55 483 721 4845; Fax: +55 483 337 5479; E-mail:
| |
Collapse
|
8
|
Activity in prelimbic cortex is required for adjusting the anxiety response level during the elevated plus-maze retest. Neuroscience 2010; 170:214-22. [DOI: 10.1016/j.neuroscience.2010.06.080] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/23/2010] [Accepted: 06/29/2010] [Indexed: 11/24/2022]
|
9
|
Devall AJ, Lovick TA. Differential activation of the periaqueductal gray by mild anxiogenic stress at different stages of the estrous cycle in female rats. Neuropsychopharmacology 2010; 35:1174-85. [PMID: 20072120 PMCID: PMC3055401 DOI: 10.1038/npp.2009.222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effect of acute exposure to mild anxiogenic stress on cutaneous nociceptive threshold was investigated in female Wistar rats at different stages of the estrous cycle. Baseline tail flick latencies did not change significantly during the cycle. However after brief exposure to vibration stress (4 Hz for 5 min), rats in late diestrus, but not at other cycle stages, developed a hyperalgesia (decrease in tail flick latency). Animals in late diestrus revealed a more than fivefold increase in the density of Fos-like immunoreactive nuclei in the dorsolateral, lateral, and ventrolateral columns in the caudal half of the periaqueductal gray matter (PAG). There was no change in the density of Fos-like immunoreactive nuclei in the PAG in rats in estrus and early diestrus, although rats in proestrus showed a smaller (50%) but significant increase. Rats undergoing withdrawal from a progesterone dosing regimen (5 mg/kg i.p. twice daily for 6 days) designed to mimic the fall in progesterone that occurs naturally during late diestrus, exhibited a stress-induced hyperalgesia that was similar to animals in late diestrus and a significant increase in Fos-positive cells in the PAG. We suggest that falling levels of progesterone during late diestrus may be a predisposing factor for the development of stress-induced hyperalgesia, which is linked to differential activation of descending pain control circuits in the PAG. Similar changes in women, when progesterone levels fall during the late luteal phase of the menstrual cycle, may contribute to the development of premenstrual symptoms that include increased anxiety and hyperalgesia.
Collapse
Affiliation(s)
- Adam J Devall
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Thelma A Lovick
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK,College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Tel: 44 121 414 6929, Fax: 44 121 414 6919, E-mail:
| |
Collapse
|