1
|
Influence of 5-HT 2A receptor function on anxiety-like behavior induced by a combination treatment with doxorubicin and cyclophosphamide in rats. Psychopharmacology (Berl) 2021; 238:3607-3614. [PMID: 34557945 DOI: 10.1007/s00213-021-05979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Anxiety-like behavior induced by a combination of doxorubicin and cyclophosphamide may be mediated by serotonin (5-HT)2A receptor hyperactivity. The anxiolytic effects of fluoxetine may be inhibited by this combination. The present study examined the mechanisms underlying anxiety-like behavior induced by the combination doxorubicin and cyclophosphamide in rats. Anxiety-like behavior was induced during a light-dark test by the doxorubicin and cyclophosphamide treatment (once a week for 2 weeks). 5-HT2A receptor and 5-HT2A receptor-mediated extracellular signal-related kinase (ERK)1/2 levels were measured using Western blotting. 5-HT reuptake activity in fluoxetine-treated rats was also examined using microdialysis. ( ±)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane, a 5-HT2A receptor agonist, induced anxiety-like behavior. The fluoxetine treatment increased extracellular 5-HT concentrations in the hippocampus of vehicle- and doxorubicin and cyclophosphamide-treated rats. 5-HT transporter levels in the hippocampus were not affected by chemotherapy. The doxorubicin and cyclophosphamide treatment did not alter 5-HT2A receptor levels in the frontal cortex. However, chemotherapy increased 5-HT2A receptor-mediated ERK1/2 phosphorylation levels significantly more than the vehicle treatment. The present results suggest that anxiety-like behavior induced by the combination of doxorubicin and cyclophosphamide is mediated by 5-HT2A receptor hyperactivity without an increase in 5-HT2A receptor levels in rats.
Collapse
|
2
|
Astrocytes in the Ventromedial Hypothalamus Involve Chronic Stress-Induced Anxiety and Bone Loss in Mice. Neural Plast 2021; 2021:7806370. [PMID: 34306063 PMCID: PMC8282369 DOI: 10.1155/2021/7806370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Chronic stress is one of the main risk factors of bone loss. While the neurons and neural circuits of the ventromedial hypothalamus (VMH) mediate bone loss induced by chronic stress, the detailed intrinsic mechanisms within the VMH nucleus still need to be explored. Astrocytes in brain regions play important roles in the regulation of metabolism and anxiety-like behavior through interactions with surrounding neurons. However, whether astrocytes in the VMH affect neuronal activity and therefore regulate chronic stress-induced anxiety and bone loss remain elusive. In this study, we found that VMH astrocytes were activated during chronic stress-induced anxiety and bone loss. Pharmacogenetic activation of the Gi and Gq pathways in VMH astrocytes reduced and increased the levels of anxiety and bone loss, respectively. Furthermore, activation of VMH astrocytes by optogenetics induced depolarization in neighboring steroidogenic factor-1 (SF-1) neurons, which was diminished by administration of N-methyl-D-aspartic acid (NMDA) receptor blocker but not by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor blocker. These results suggest that there may be a functional "glial-neuron microcircuit" in VMH nuclei that mediates anxiety and bone loss induced by chronic stress. This study not only advances our understanding of glial cell function but also provides a potential intervention target for chronic stress-induced anxiety and bone loss therapy.
Collapse
|
3
|
Yang F, Liu Y, Chen S, Dai Z, Yang D, Gao D, Shao J, Wang Y, Wang T, Zhang Z, Zhang L, Lu WW, Li Y, Wang L. A GABAergic neural circuit in the ventromedial hypothalamus mediates chronic stress-induced bone loss. J Clin Invest 2021; 130:6539-6554. [PMID: 32910804 DOI: 10.1172/jci136105] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022] Open
Abstract
Homeostasis of bone metabolism is regulated by the central nervous system, and mood disorders such as anxiety are associated with bone metabolism abnormalities, yet our understanding of the central neural circuits regulating bone metabolism is limited. Here, we demonstrate that chronic stress in crewmembers resulted in decreased bone density and elevated anxiety in an isolated habitat mimicking a space station. We then used a mouse model to demonstrate that GABAergic neural circuitry in the ventromedial hypothalamus (VMH) mediates chronic stress-induced bone loss. We show that GABAergic inputs in the dorsomedial VMH arise from a specific group of somatostatin neurons in the posterior region of the bed nucleus of the stria terminalis, which is indispensable for stress-induced bone loss and is able to trigger bone loss in the absence of stressors. In addition, the sympathetic system and glutamatergic neurons in the nucleus tractus solitarius were employed to regulate stress-induced bone loss. Our study has therefore identified the central neural mechanism by which chronic stress-induced mood disorders, such as anxiety, influence bone metabolism.
Collapse
Affiliation(s)
- Fan Yang
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS).,CAS Key Laboratory of Brain Connectome and Manipulation.,Guangdong Provincial Key Laboratory of Brain Connectome and Behavior.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunhui Liu
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS).,CAS Key Laboratory of Brain Connectome and Manipulation.,Guangdong Provincial Key Laboratory of Brain Connectome and Behavior.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shanping Chen
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS).,CAS Key Laboratory of Brain Connectome and Manipulation.,Guangdong Provincial Key Laboratory of Brain Connectome and Behavior.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dazhi Yang
- Department of Orthopedics, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Dashuang Gao
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS).,CAS Key Laboratory of Brain Connectome and Manipulation.,Guangdong Provincial Key Laboratory of Brain Connectome and Behavior.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Shao
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS).,CAS Key Laboratory of Brain Connectome and Manipulation.,Guangdong Provincial Key Laboratory of Brain Connectome and Behavior.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuyao Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS).,CAS Key Laboratory of Brain Connectome and Manipulation.,Guangdong Provincial Key Laboratory of Brain Connectome and Behavior.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Ting Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS).,CAS Key Laboratory of Brain Connectome and Manipulation.,Guangdong Provincial Key Laboratory of Brain Connectome and Behavior.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Zhijian Zhang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS, Wuhan, China.,Center for Excellence in Brain Science and Intelligence Technology, CAS, Shanghai, China
| | - Lu Zhang
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - William W Lu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Liping Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS).,CAS Key Laboratory of Brain Connectome and Manipulation.,Guangdong Provincial Key Laboratory of Brain Connectome and Behavior.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Sant’Ana AB, Vilela-Costa HH, Vicente MA, Hernandes PM, de Andrade TGCS, Zangrossi H. Role of 5-HT2C receptors of the dorsal hippocampus in the modulation of anxiety- and panic-related defensive responses in rats. Neuropharmacology 2019; 148:311-319. [DOI: 10.1016/j.neuropharm.2019.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 11/26/2022]
|
5
|
The blockage of ventromedial hypothalamus CRF type 2 receptors impairs escape responses in the elevated T-maze. Behav Brain Res 2017; 329:41-50. [DOI: 10.1016/j.bbr.2017.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/17/2017] [Indexed: 11/20/2022]
|
6
|
Sarkar A, Chachra P, Vaidya VA. Postnatal fluoxetine-evoked anxiety is prevented by concomitant 5-HT2A/C receptor blockade and mimicked by postnatal 5-HT2A/C receptor stimulation. Biol Psychiatry 2014; 76:858-68. [PMID: 24315410 DOI: 10.1016/j.biopsych.2013.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Postnatal treatment with the selective serotonin reuptake inhibitor fluoxetine, evokes anxiety and depressive behavior in rodent models in adulthood. We examined the role of serotonin 2A (5-HT2A), serotonin 2C (5-HT2C) and serotonin 1A (5-HT1A) receptors, implicated in the development of anxiety, in the behavioral consequences of postnatal fluoxetine (PNFlx). METHODS Control and PNFlx rat pups received concomitant treatment with the 5-HT2A/C receptor antagonist, ketanserin, the 5-HT2A receptor antagonist, MDL100907, the 5-HT2C receptor antagonist, SB242084, or the 5-HT1A receptor antagonist, WAY-100635, and were tested for behavior in adulthood. The effect of postnatal treatment with the 5-HT2A/C receptor agonist, DOI, on anxiety behavior was examined in adulthood. RESULTS Postnatal 5-HT2A/C receptor blockade prevented PNFlx-evoked anxiety, attenuated depressive behavior, and normalized specific gene expression changes in the prefrontal cortex. Postnatal, selective 5-HT2A receptor antagonist treatment blocked PNFlx-evoked anxiety and depressive behavior, whereas 5-HT2C receptor antagonist treatment prevented anxiety but not depressive behavior. Postnatal 5-HT2A/C receptor stimulation was sufficient to evoke anxiety in adulthood. Serotonin 1A receptor blockade did not alter PNFlx-evoked anxiety but resulted in anxiety in control animals, an effect attenuated by concomitant 5-HT2A/C receptor blockade. CONCLUSIONS Postnatal fluoxetine-evoked anxiety and depressive behavior, as well as specific gene expression changes in the prefrontal cortex, were prevented by 5-HT2A/C receptor blockade. Adult anxiety was evoked by either 5-HT2A/C receptor stimulation or 5-HT1A receptor blockade of naive control pups. Our findings implicate serotonin 2 receptors in the development of perturbed emotionality following PNFlx and suggest that an altered balance of signaling through 5-HT1A and 5-HT2A/C receptors in early life influences anxiety behavior.
Collapse
Affiliation(s)
- Ambalika Sarkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Parul Chachra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
7
|
Silva MSCF, Pereira BA, Céspedes IC, Nascimento JOG, Bittencourt JC, Viana MB. Dorsomedial hypothalamus CRF type 1 receptors selectively modulate inhibitory avoidance responses in the elevated T-maze. Behav Brain Res 2014; 271:249-57. [PMID: 24937051 DOI: 10.1016/j.bbr.2014.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/04/2014] [Accepted: 06/08/2014] [Indexed: 02/07/2023]
Abstract
Corticotropin-releasing factor (CRF) plays a critical role in the mediation of physiological and behavioral responses to stressors. In the present study, we investigated the role played by the CRF system within the dorsomedial hypothalamus (DMH) in the modulation of anxiety- and panic-related responses. Male Wistar rats were administered into the DMH with CRF (125 and 250 ng/0.2 μl, experiment 1) or with the CRFR1 antagonist antalarmin (25 ng/0.2 μl, experiment 2) and 10 min later tested in the elevated T-maze (ETM) for inhibitory avoidance and escape measurements. In clinical terms, these responses have been respectively related to generalized anxiety and panic disorder. To further verify if the anxiogenic effects of CRF were mediated by CRFR1 activation, we also investigated the effects of the combined treatment with CRF (250 ng/0.2 μl) and antalarmin (25 ng/0.2 μl) (experiment 3). All animals were tested in an open field, immediately after the ETM, for locomotor activity assessment. Results showed that 250 ng/0.2μl of CRF facilitated ETM avoidance, an anxiogenic response. Antalarmin significantly decreased avoidance latencies, an anxiolytic effect, and was able to counteract the anxiogenic effects of CRF. None of the compounds administered altered escape responses or locomotor activity measurements. These results suggest that CRF in the DMH exerts anxiogenic effects by activating type 1 receptors, which might be of relevance to the physiopathology of generalized anxiety disorder.
Collapse
Affiliation(s)
- Mariana S C F Silva
- Departamento de Biociências, Universidade Federal de São Paulo, 11060-001 Santos, SP Brazil
| | - Bruno A Pereira
- Departamento de Biociências, Universidade Federal de São Paulo, 11060-001 Santos, SP Brazil
| | - Isabel C Céspedes
- Departamento de Biociências, Universidade Federal de São Paulo, 11060-001 Santos, SP Brazil
| | - Juliana O G Nascimento
- Departamento de Psiquiatria e Psicologia Médica, Universidade Federal de São Paulo, 04038-020 São Paulo, SP, Brazil
| | - Jackson C Bittencourt
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - Milena B Viana
- Departamento de Biociências, Universidade Federal de São Paulo, 11060-001 Santos, SP Brazil.
| |
Collapse
|
8
|
de Bortoli VC, Yamashita PSDM, Zangrossi H. 5-HT1A and 5-HT2A receptor control of a panic-like defensive response in the rat dorsomedial hypothalamic nucleus. J Psychopharmacol 2013; 27:1116-23. [PMID: 23787365 DOI: 10.1177/0269881113492900] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dorsomedial nucleus of the hypothalamus (DMH) has long been implicated in the genesis/regulation of escape, a panic-related defensive behavior. In the dorsal periaqueductal gray matter (dPAG), another key panic-associated area, serotonin, through the activation of 5-HT1A and 5-HT2A receptors, exerts an inhibitory role on escape expression. This panicolytic-like effect is facilitated by chronic treatment with clinically effective antipanic drugs such as fluoxetine and imipramine. It is still unclear whether serotonin within the DMH plays a similar regulatory action. The results showed that intra-DMH injection of the 5-HT1A receptor agonist 8-OH-DPAT, the preferential 5-HT2A receptor agonist DOI, but not the 5-HT2C agonist MK-212, inhibited the escape reaction of male Wistar rats evoked by electrical stimulation of the DMH. Local microinjection of the 5-HT1A antagonist WAY-100635 or the preferential 5-HT2A antagonist ketanserin was ineffective. Whereas chronic (21 days) systemic treatment with imipramine potentiated the anti-escape effect of both 8-OH-DPAT and DOI, repeated administration of fluoxetine enhanced the effect of the latter agonist. The results indicate that 5-HT1A and 5-HT2A receptors within the DMH play a phasic inhibitory role upon escape expression, as previously reported in the dPAG. Facilitation of 5-HT-mediated neurotransmission in the DMH may be implicated in the mode of action of antipanic drugs.
Collapse
|
9
|
Smith CD, Piasecki CC, Weera M, Olszewicz J, Lonstein JS. Noradrenergic alpha-2 receptor modulators in the ventral bed nucleus of the stria terminalis: effects on anxiety behavior in postpartum and virgin female rats. Behav Neurosci 2013; 127:582-97. [PMID: 23796237 PMCID: PMC3947518 DOI: 10.1037/a0032776] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Emotional hyperreactivity can inhibit maternal responsiveness in female rats and other animals. Maternal behavior in postpartum rats is disrupted by increasing norepinephrine release in the ventral bed nucleus of the stria terminalis (BSTv) with the α2-autoreceptor antagonist, yohimbine, or the more selective α2-autoreceptor antagonist, idazoxan (Smith et al., 2012). Because high noradrenergic activity in the BSTv can also increase anxiety-related behaviors, increased anxiety may underlie the disrupted mothering of dams given yohimbine or idazoxan. To assess this possibility, anxiety-related behaviors in an elevated plus maze were assessed in postpartum rats after administration of yohimbine or idazoxan. It was further assessed if the α2-autoreceptor agonist clonidine (which decreases norepinephrine release) would, conversely, reduce dams' anxiety. Groups of diestrous virgins were also examined. It was found that peripheral or intra-BSTv yohimbine did increase anxiety-related behavior in postpartum females. However, BSTv infusion of idazoxan did not reproduce yohimbine's anxiogenic effects and anxiety was not reduced by peripheral or intra-BSTv clonidine. Because yohimbine is a weak 5HT1A receptor agonist, other groups of females received BSTv infusion of the 5HT1A receptor agonist 8OH-DPAT, but it did not alter their anxiety-related behavior. Lastly, levels of norepinephrine and serotonin in tissue punches from the BSTv did not differ between postpartum and diestrous rats, but serotonin turnover was lower in mothers. These results suggest that the impaired maternal behavior after BSTv infusion of yohimbine or idazoxan cannot both be readily explained by an increase in dams' anxiety, and that BSTv α2-autoreceptor modulation alone has little influence on anxiety-related behaviors in postpartum or diestrous rats.
Collapse
Affiliation(s)
- Carl D. Smith
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| | - Christopher C. Piasecki
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| | - Marcus Weera
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| | - Joshua Olszewicz
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| | - Joseph S. Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| |
Collapse
|
10
|
Vilela FC, Antunes-Rodrigues J, Elias LLK, Giusti-Paiva A. Corticosterone synthesis inhibitor metyrapone preserves changes in maternal behavior and neuroendocrine responses during immunological challenge in lactating rats. Neuroendocrinology 2013; 97:322-30. [PMID: 23295343 DOI: 10.1159/000346354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 12/07/2012] [Indexed: 11/19/2022]
Abstract
Lactation is associated with profound behavioral and physiological adaptations in the mother that support reproductive success. These include neuroendocrine adaptation to stress that reduces anxiety-related behavior and emotional responsiveness. However, the way in which endogenous glucocorticoids secreted during immunological challenge influence the neuroendocrine system and behavior of lactating rats is not well understood. To evaluate the effects of glucocorticoids on the neuroendocrine response to suckling, maternal behavior and maternal anxiolysis, lactating female rats were treated with vehicle or metyrapone prior to the administration of a saline solution or a lipopolysaccharide (LPS) solution. LPS treatment reduced oxytocin and prolactin secretion during suckling and affected a variety of maternal behaviors, such as increasing the latency of retrieval a new nest, decreasing the number of pups gathered to the nest, increasing the latency of retrieving the first pup and decreasing the percentage of time spent in the arched-nursing position. In addition, the LPS treatment increased the baseline and avoidance latencies in an elevated T-maze. Pretreatment with metyrapone counteracted effects produced by LPS, including hormonal and behavioral responses in lactating rats. Taken together, our results indicate that stress induced by LPS treatment attenuates the neuroendocrine response to suckling, followed by disruption of maternal behavior and maternal anxiolysis in lactating female rats. These changes may be due to corticosterone release, as evidenced by the reversal of behavioral and neuroendocrine responses after immunological challenge in lactating rats that had been pretreated with metyrapone.
Collapse
Affiliation(s)
- Fabiana C Vilela
- Department of Physiological Science, Federal University of Alfenas (UNIFAL), Alfenas, Brazil. facvilela @ gmail.com
| | | | | | | |
Collapse
|
11
|
Kometer M, Schmidt A, Bachmann R, Studerus E, Seifritz E, Vollenweider FX. Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors. Biol Psychiatry 2012; 72:898-906. [PMID: 22578254 DOI: 10.1016/j.biopsych.2012.04.005] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Serotonin (5-HT) 1A and 2A receptors have been associated with dysfunctional emotional processing biases in mood disorders. These receptors further predominantly mediate the subjective and behavioral effects of psilocybin and might be important for its recently suggested antidepressive effects. However, the effect of psilocybin on emotional processing biases and the specific contribution of 5-HT2A receptors across different emotional domains is unknown. METHODS In a randomized, double-blind study, 17 healthy human subjects received on 4 separate days placebo, psilocybin (215 μg/kg), the preferential 5-HT2A antagonist ketanserin (50 mg), or psilocybin plus ketanserin. Mood states were assessed by self-report ratings, and behavioral and event-related potential measurements were used to quantify facial emotional recognition and goal-directed behavior toward emotional cues. RESULTS Psilocybin enhanced positive mood and attenuated recognition of negative facial expression. Furthermore, psilocybin increased goal-directed behavior toward positive compared with negative cues, facilitated positive but inhibited negative sequential emotional effects, and valence-dependently attenuated the P300 component. Ketanserin alone had no effects but blocked the psilocybin-induced mood enhancement and decreased recognition of negative facial expression. CONCLUSIONS This study shows that psilocybin shifts the emotional bias across various psychological domains and that activation of 5-HT2A receptors is central in mood regulation and emotional face recognition in healthy subjects. These findings may not only have implications for the pathophysiology of dysfunctional emotional biases but may also provide a framework to delineate the mechanisms underlying psylocybin's putative antidepressant effects.
Collapse
Affiliation(s)
- Michael Kometer
- Neuropsychopharmacology and Brain Imaging, and Heffter Research Center, Clinic of Affective Disorders and General Psychiatry, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Steroidogenic factor 1 (SF-1; officially designated NR5a1) is a member of a nuclear receptor superfamily with important roles in the development of endocrine systems. Studies with global and tissue-specific (i.e. central nervous system) knockout mice have revealed several roles of SF-1 in brain. These include morphological effects on the development of the ventromedial nucleus of the hypothalamus and functional effects on body weight regulation through modulation of physical activity, anxiety-like behaviours and female sexual behaviours. Although such defects are almost certainly a result of the absence of SF-1 acting as a transcription factor in the hypothalamus, global SF-1 knockout mice also represent a model for studying the sex differences in the brain that develop in the absence of exposure to foetal sex steroid hormones as a result of the absence of gonads. In the present review, current knowledge of the roles of SF-1 protein in the central nervous system is discussed.
Collapse
Affiliation(s)
- T Büdefeld
- Centre for Animal Genomics, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
13
|
de Paula D, Torricelli A, Lopreato M, Nascimento J, Viana M. 5-HT2A receptor activation in the dorsolateral septum facilitates inhibitory avoidance in the elevated T-maze. Behav Brain Res 2012; 226:50-5. [DOI: 10.1016/j.bbr.2011.08.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 08/22/2011] [Accepted: 08/27/2011] [Indexed: 10/17/2022]
|