1
|
Brigo F, Zelano J, Abraira L, Bentes C, Ekdahl CT, Lattanzi S, Ingvar Lossius M, Redfors P, Rouhl RPW, Russo E, Sander JW, Vogrig A, Wickström R. Proceedings of the "International Congress on Structural Epilepsy & Symptomatic Seizures" (STESS, Gothenburg, Sweden, 29-31 March 2023). Epilepsy Behav 2024; 150:109538. [PMID: 38039602 DOI: 10.1016/j.yebeh.2023.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Affiliation(s)
- Francesco Brigo
- Innovation, Research and Teaching Service (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Bolzano, Italy.
| | - Johan Zelano
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden; Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg University, Sweden; Wallenberg Center of Molecular and Translational Medicine, Gothenburg University, Sweden
| | - Laura Abraira
- Neurology Department, Epilepsy Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Epilepsy Research Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Carla Bentes
- Neurophysiological Monitoring Unit - EEG/Sleep Laboratory, Refractory Epilepsy Reference Centre (member of EpiCARE), Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Centro de Estudos Egas Moniz, Faculty of Medicine, Lisbon University, Lisbon, Portugal
| | - Christine T Ekdahl
- Division of Clinical Neurophysiology and Department of Clinical Sciences, Lund University, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Morten Ingvar Lossius
- National Centre for Epilepsy, Division of Clinical Neuroscience, Oslo University Hospital, Member of the ERN EpiCARE, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Petra Redfors
- Department of Neurology, Member of the ERN EpiCARE, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rob P W Rouhl
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, The Netherlands; Academic Centre for Epileptology Kempenhaeghe/MUMC+ Heeze and Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Emilio Russo
- Science of Health Department, University Magna Grecia of Catanzaro, Italy
| | - Josemir W Sander
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK; Centre for Epilepsy, Chalfont St Peter, Bucks., SL9 0RJ, United Kingdom; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103 SW, The Netherlands; Neurology Department, West of China Hospital, Sichuan University, Chengdu 610041, China
| | - Alberto Vogrig
- Department of Medicine (DAME), University of Udine, Udine, Italy; Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Ronny Wickström
- Neuropediatric Unit, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Celli R, Striano P, Citraro R, Di Menna L, Cannella M, Imbriglio T, Koko M, Consortium EEC, De Sarro G, Monn JA, Battaglia G, van Luijtelaar G, Nicoletti F, Russo E, Leo A. mGlu3 Metabotropic Glutamate Receptors as a Target for the Treatment of Absence Epilepsy: Preclinical and Human Genetics Data. Curr Neuropharmacol 2023; 21:105-118. [PMID: 35579153 PMCID: PMC10193767 DOI: 10.2174/1570159x20666220509160511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Previous studies suggest that different metabotropic glutamate (mGlu) receptor subtypes are potential drug targets for treating absence epilepsy. However, no information is available on mGlu3 receptors. OBJECTIVE To examine whether (i) changes of mGlu3 receptor expression/signaling are found in the somatosensory cortex and thalamus of WAG/Rij rats developing spontaneous absence seizures; (ii) selective activation of mGlu3 receptors with LY2794193 affects the number and duration of spikewave discharges (SWDs) in WAG/Rij rats; and (iii) a genetic variant of GRM3 (encoding the mGlu3 receptor) is associated with absence epilepsy. METHODS Animals: immunoblot analysis of mGlu3 receptors, GAT-1, GLAST, and GLT-1; realtime PCR analysis of mGlu3 mRNA levels; assessment of mGlu3 receptor signaling; EEG analysis of SWDs; assessment of depressive-like behavior. Humans: search for GRM3 and GRM5 missense variants in 196 patients with absence epilepsy or other Idiopathic Generalized Epilepsy (IGE)/ Genetic Generalized Epilepsy (GGE) and 125,748 controls. RESULTS mGlu3 protein levels and mGlu3-mediated inhibition of cAMP formation were reduced in the thalamus and somatosensory cortex of pre-symptomatic (25-27 days old) and symptomatic (6-7 months old) WAG/Rij rats compared to age-matched controls. Treatment with LY2794193 (1 or 10 mg/kg, i.p.) reduced absence seizures and depressive-like behavior in WAG/Rij rats. LY2794193 also enhanced GAT1, GLAST, and GLT-1 protein levels in the thalamus and somatosensory cortex. GRM3 and GRM5 gene variants did not differ between epileptic patients and controls. CONCLUSION We suggest that mGlu3 receptors modulate the activity of the cortico-thalamo-cortical circuit underlying SWDs and that selective mGlu3 receptor agonists are promising candidate drugs for absence epilepsy treatment.
Collapse
Affiliation(s)
| | - Pasquale Striano
- Department Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
- I.R.C.C.S. “G. Gaslini” Institute, Genova, Italy
| | - Rita Citraro
- University of Catanzaro, School of Medicine, Science of Health Department, FAS@UMG Research Center, Catanzaro, Italy
| | | | | | | | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | | | - Giovambattista De Sarro
- University of Catanzaro, School of Medicine, Science of Health Department, FAS@UMG Research Center, Catanzaro, Italy
| | | | - Giuseppe Battaglia
- I.R.C.C.S. Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | | | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Emilio Russo
- University of Catanzaro, School of Medicine, Science of Health Department, FAS@UMG Research Center, Catanzaro, Italy
| | - Antonio Leo
- University of Catanzaro, School of Medicine, Science of Health Department, FAS@UMG Research Center, Catanzaro, Italy
| |
Collapse
|
3
|
Febrile Seizures Cause Depression and Anxiogenic Behaviors in Rats. Cells 2022; 11:cells11203228. [PMID: 36291094 PMCID: PMC9600115 DOI: 10.3390/cells11203228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Febrile seizure (FS) is a common type of seizure occurring in human during infancy and childhood. Although an epileptic seizure is associated with psychiatric disorders and comorbid diseases such as depression, anxiety, autism spectrum disorders, sleep disorders, attention deficits, cognitive impairment, and migraine, the causal relationship between FS and psychiatric disorders is poorly understood. The objective of the current study was to investigate the relationship of FS occurrence in childhood with the pathogenesis of anxiety disorder and depression using an FS rat model. We induced febrile seizures in infantile rats (11 days postnatal) using a mercury vapor lamp. At 3 weeks and 12 weeks after FS induction, we examined behaviors and recorded local field potentials (LFPs) to assess anxiety and depression disorder. Interestingly, after FS induction in infantile rats, anxiogenic behaviors and depression-like phenotypes were found in both adult and juvenile FS rats. The analysis of LFPs revealed that 4-7 Hz hippocampal theta rhythm, a neural oscillatory marker for anxiety disorder, was significantly increased in FS rats compared with their wild-type littermates. Taken together, our findings suggest that FS occurrence in infants is causally related to increased levels of anxiety-related behaviors and depression-like symptoms in juvenile and adult rodents.
Collapse
|
4
|
Sun Y, Ren G, Ren J, Wang Q. Intrinsic Brain Activity in Temporal Lobe Epilepsy With and Without Depression: Insights From EEG Microstates. Front Neurol 2022; 12:753113. [PMID: 35058871 PMCID: PMC8764160 DOI: 10.3389/fneur.2021.753113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Depression is the most common psychiatric comorbidity of temporal lobe epilepsy (TLE). In the recent years, studies have focused on the common pathogenesis of TLE and depression. However, few of the studies focused on the dynamic characteristics of TLE with depression. We tested the hypotheses that there exist abnormalities in microstates in patients with TLE with depression. Methods: Participants were classified into patients with TLE with depression (PDS) (n = 19) and patients with TLE without depression (nPDS) (n = 19) based upon the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). Microstate analysis was applied based on 256-channel electroencephalography (EEG) to detect the dynamic changes in whole brain. The coverage (proportion of time spent in each state), frequency of occurrence, and duration (average time of each state) were calculated. Results: Patients with PDS showed a shorter mean microstate duration with higher mean occurrence per second compared to patients with nPDS. There was no difference between the two groups in the coverage of microstate A–D. Conclusion: This is the first study to present the temporal fluctuations of EEG topography in comorbid depression in TLE using EEG microstate analysis. The temporal characteristics of the four canonical EEG microstates were significantly altered in patients with TLE suffer from comorbid depression.
Collapse
Affiliation(s)
- Yueqian Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guoping Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Jiechuan Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Korkmaz OT, Arkan S, Öncü-Kaya EM, Ateş N, Tunçel N. Vasoactive intestinal peptide (VIP) conducts the neuronal activity during absence seizures: GABA seems to be the main mediator of VIP. Neurosci Lett 2021; 765:136268. [PMID: 34571088 DOI: 10.1016/j.neulet.2021.136268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/27/2022]
Abstract
Absence epilepsy is classified as a childhood generalized epilepsy syndrome with distinctive electroencephalographic patterns. The Wistar Albino Glaxo originating from Rijswijk (WAG/Rij) strain is a very well validated animal model of absence epilepsy that also shows behavioral deficits. In addition to the gastrointestinal system, VIP is highly expressed throughout numerous brain regions, and it plays crucial roles as a neurotransmitter and as a neuromodulatory, neurotrophic and neuroprotective factor in both the central and peripheral nervous systems. In this study, adult WAG/Rij rats were divided into two groups (n = 10): a group that was administered VIP (25 ng/kg i.p.) every 2 days for 15 days and an age-matched control group that was administered physiological saline. Electrical brain activity and behavior (depressive- like behavior, learning and memory and anxiety) were investigated in both groups. In addition, the extracellular concentrations of GABA and glutamate and the GABA/glutamate ratio were measured by high-performance liquid chromatography in microdialysate samples collected from the somatosensorial cortex of WAG/Rij rats. Our results demonstrated that VIP treatment significantly suppressed the total duration and number of spike wave discharges in WAG/Rij rats. However, VIP had no significant effect on behavior. VIP increased the extracellular concentration of GABA and the GABA/glutamate ratio in the somatosensory cortex. In conclusion, VIP has suppressive effects on absence seizures, possibly by increasing the GABA concentration and inducing the transformation of glutamate to GABA in the somatosensory cortex of WAG/Rij rats.
Collapse
Affiliation(s)
- Orhan Tansel Korkmaz
- Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Sertan Arkan
- Department of Physiology, Medical Faculty, Kocaeli University, 41380, Kocaeli, Turkey
| | - Elif Mine Öncü-Kaya
- Department of Chemistry, Science Faculty, Eskisehir Technical University, 26470 Eskisehir, Turkey
| | - Nurbay Ateş
- Department of Physiology, Medical Faculty, Kocaeli University, 41380, Kocaeli, Turkey
| | - Neşe Tunçel
- Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| |
Collapse
|
6
|
Gruenbaum BF, Sandhu MRS, Bertasi RAO, Bertasi TGO, Schonwald A, Kurup A, Gruenbaum SE, Freedman IG, Funaro MC, Blumenfeld H, Sanacora G. Absence seizures and their relationship to depression and anxiety: Evidence for bidirectionality. Epilepsia 2021; 62:1041-1056. [PMID: 33751566 PMCID: PMC8443164 DOI: 10.1111/epi.16862] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Absence seizures (AS), presenting as short losses of consciousness with staring spells, are a common manifestation of childhood epilepsy that is associated with behavioral, emotional, and social impairments. It has also been suggested that patients with AS are more likely to suffer from mood disorders such as depression and anxiety. This systematic review and meta-analysis synthesizes human and animal models that investigated mood disorders and AS. Of the 1019 scientific publications identified, 35 articles met the inclusion criteria for this review. We found that patients with AS had greater odds of developing depression and anxiety when compared to controls (odds ratio = 4.93, 95% confidence interval = 2.91-8.35, p < .01). The included studies further suggest a strong correlation between AS and depression and anxiety in the form of a bidirectional relationship. The current literature emphasizes that these conditions likely share underlying mechanisms, such as genetic predisposition, neurophysiology, and anatomical pathways. Further research will clarify this relationship and ensure more effective treatment for AS and mood disorders.
Collapse
Affiliation(s)
- Benjamin F Gruenbaum
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Mani Ratnesh S Sandhu
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Raphael A O Bertasi
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Tais G O Bertasi
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Antonia Schonwald
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anirudh Kurup
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shaun E Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Isaac G Freedman
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Melissa C Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Drug repositioning for treatment-resistant depression: Hypotheses from a pharmacogenomic study. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110050. [PMID: 32738352 DOI: 10.1016/j.pnpbp.2020.110050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
About 20-30% of patients with major depressive disorder (MDD) develop treatment-resistant depression (TRD) and finding new effective treatments for TRD has been a challenge. This study aimed to identify new possible pharmacological options for TRD. Genes in pathways included in predictive models of TRD in a previous whole exome sequence study were compared with those coding for targets of drugs in any phase of development, nutraceuticals, proteins and peptides from Drug repurposing Hub, Drug-Gene Interaction database and DrugBank database. We tested if known gene targets were enriched in TRD-associated genes by a hypergeometric test. Compounds enriched in TRD-associated genes after false-discovery rate (FDR) correction were annotated and compared with those showing enrichment in genes associated with MDD in the last Psychiatric Genomics Consortium genome-wide association study. Among a total of 15,475 compounds, 542 were enriched in TRD-associated genes (FDR p < .05). Significant results included drugs which are currently used in TRD (e.g. lithium and ketamine), confirming the rationale of this approach. Interesting molecules included modulators of inflammation, renin-angiotensin system, proliferator-activated receptor agonists, glycogen synthase kinase 3 beta inhibitors and the rho associated kinase inhibitor fasudil. Nutraceuticals, mostly antioxidant polyphenols, were also identified. Drugs showing enrichment for TRD-associated genes had a higher probability of enrichment for MDD-associated genes compared to those having no TRD-genes enrichment (p = 6.21e-55). This study suggested new potential treatments for TRD using a in silico approach. These analyses are exploratory only but can contribute to the identification of drugs to study in future clinical trials.
Collapse
|
8
|
Immediate versus late effects of vigabatrin on spike and wave discharges. Epilepsy Res 2020; 165:106379. [DOI: 10.1016/j.eplepsyres.2020.106379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/17/2020] [Accepted: 05/29/2020] [Indexed: 01/12/2023]
|
9
|
D'Alessio L, Korman GP, Sarudiansky M, Guelman LR, Scévola L, Pastore A, Obregón A, Roldán EJA. Reducing Allostatic Load in Depression and Anxiety Disorders: Physical Activity and Yoga Practice as Add-On Therapies. Front Psychiatry 2020; 11:501. [PMID: 32581876 PMCID: PMC7287161 DOI: 10.3389/fpsyt.2020.00501] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
The allostatic load (AL) index constitutes a useful tool to objectively assess the biological aspects of chronic stress in clinical practice. AL index has been positively correlated with cumulative chronic stress (physical and psychosocial stressors) and with a high risk to develop pathological conditions (e.g., metabolic syndrome, cardiovascular pathology, inflammatory disorders) and the so-called stress-related psychiatric disorders, including anxiety and depressive disorders. Chronic stress has negative effects on brain neuroplasticity, especially on hippocampal neurogenesis and these effects may be reversed by antidepressant treatments. Several evidences indicate that non-pharmacological interventions based on physical activity and yoga practice may add synergizing benefits to classical treatments (antidepressant and benzodiazepines) for depression and anxiety, reducing the negative effects of chronic stress. The aim of this review is to provide a general overview of current knowledge on AL and chronic stress in relation to depression and anxiety, physical activity and yoga practice.
Collapse
Affiliation(s)
- Luciana D'Alessio
- Universidad de Buenos Aires, Facultad de Medicina, IBCN-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Guido Pablo Korman
- Universidad de Buenos Aires, Facultad de Psicología, CAEA-CONICET, Buenos Aires, Argentina
| | - Mercedes Sarudiansky
- Universidad de Buenos Aires, Facultad de Psicología, CAEA-CONICET, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires, Facultad de Medicina, CEFYBO-CONICET, Buenos Aires, Argentina
| | - Laura Scévola
- Universidad de Buenos Aires, Hospital Ramos Mejía, Buenos Aires, Argentina
| | | | - Amilcar Obregón
- Dirección Médica y Científica, Gador SA, Buenos Aires, Argentina
| | | |
Collapse
|
10
|
Klein P, Friedman A, Hameed MQ, Kaminski RM, Bar-Klein G, Klitgaard H, Koepp M, Jozwiak S, Prince DA, Rotenberg A, Twyman R, Vezzani A, Wong M, Löscher W. Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy? Epilepsia 2020; 61:359-386. [PMID: 32196665 PMCID: PMC8317585 DOI: 10.1111/epi.16450] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Prevention of epilepsy is a great unmet need. Acute central nervous system (CNS) insults such as traumatic brain injury (TBI), cerebrovascular accidents (CVA), and CNS infections account for 15%-20% of all epilepsy. Following TBI and CVA, there is a latency of days to years before epilepsy develops. This allows treatment to prevent or modify postinjury epilepsy. No such treatment exists. In animal models of acquired epilepsy, a number of medications in clinical use for diverse indications have been shown to have antiepileptogenic or disease-modifying effects, including medications with excellent side effect profiles. These include atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, and the antiseizure medications levetiracetam, brivaracetam, topiramate, gabapentin, pregabalin, vigabatrin, and eslicarbazepine acetate. In addition, there are preclinical antiepileptogenic data for anakinra, rapamycin, fingolimod, and erythropoietin, although these medications have potential for more serious side effects. However, except for vigabatrin, there have been almost no translation studies to prevent or modify epilepsy using these potentially "repurposable" medications. We may be missing an opportunity to develop preventive treatment for epilepsy by not evaluating these medications clinically. One reason for the lack of translation studies is that the preclinical data for most of these medications are disparate in terms of types of injury, models within different injury type, dosing, injury-treatment initiation latencies, treatment duration, and epilepsy outcome evaluation mode and duration. This makes it difficult to compare the relative strength of antiepileptogenic evidence across the molecules, and difficult to determine which drug(s) would be the best to evaluate clinically. Furthermore, most preclinical antiepileptogenic studies lack information needed for translation, such as dose-blood level relationship, brain target engagement, and dose-response, and many use treatment parameters that cannot be applied clinically, for example, treatment initiation before or at the time of injury and dosing higher than tolerated human equivalent dosing. Here, we review animal and human antiepileptogenic evidence for these medications. We highlight the gaps in our knowledge for each molecule that need to be filled in order to consider clinical translation, and we suggest a platform of preclinical antiepileptogenesis evaluation of potentially repurposable molecules or their combinations going forward.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland
| | - Alon Friedman
- Departments of Physiology and Cell Biology, and Brain and Cognitive Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Departments of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Canada
| | - Mustafa Q. Hameed
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rafal M. Kaminski
- Neurosymptomatic Domains Section, Roche Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Guy Bar-Klein
- McKusick-Nathans Institute of Genetic Medicine, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henrik Klitgaard
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l’Alleud, Belgium
| | - Mathias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Sergiusz Jozwiak
- Department of Pediatric Neurology, Warsaw Medical University, Warsaw, Poland
| | - David A. Prince
- Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Scientific Institute for Research and Health Care, Milan, Italy
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
11
|
Citraro R, Leo A, De Caro C, Nesci V, Gallo Cantafio ME, Amodio N, Mattace Raso G, Lama A, Russo R, Calignano A, Tallarico M, Russo E, De Sarro G. Effects of Histone Deacetylase Inhibitors on the Development of Epilepsy and Psychiatric Comorbidity in WAG/Rij Rats. Mol Neurobiol 2019; 57:408-421. [PMID: 31368023 DOI: 10.1007/s12035-019-01712-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/15/2019] [Indexed: 01/08/2023]
Abstract
Epigenetic mechanisms, such as alterations in histone acetylation based on histone deacetylases (HDACs) activity, have been linked not only to normal brain function but also to several brain disorders including epilepsy and the epileptogenic process. In WAG/Rij rats, a genetic model of absence epilepsy, epileptogenesis and mild-depression comorbidity, we investigated the effects of two HDAC inhibitors (HDACi), namely sodium butyrate (NaB), valproic acid (VPA) and their co-administration, on the development of absence seizures and related psychiatric/neurologic comorbidities following two different experimental paradigms. Treatment effects have been evaluated by EEG recordings (EEG) and behavioural tests at different time points. Prolonged and daily VPA and NaB treatment, started before absence seizure onset (P30), significantly reduced the development of absence epilepsy showing antiepileptogenic effects. These effects were enhanced by NaB/VPA co-administration. Furthermore, early-chronic HDACi treatment improved depressive-like behaviour and cognitive performance 1 month after treatment withdrawal. WAG/Rij rats of 7 months of age showed reduced acetylated levels of histone H3 and H4, analysed by Western Blotting of homogenized brain, in comparison to WAG/Rij before seizure onset (P30). The brain histone acetylation increased significantly during treatment with NaB or VPA alone and more markedly during co-administration. We also observed decreased expression of both HDAC1 and 3 following HDACi treatment compared to control group. Our results suggest that histone modifications may have a crucial role in the development of epilepsy and early treatment with HDACi might be a possible strategy for preventing epileptogenesis also affecting behavioural comorbidities.
Collapse
Affiliation(s)
- Rita Citraro
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Antonio Leo
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Carmen De Caro
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Valentina Nesci
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Maria E Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | - Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Martina Tallarico
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy.,Pharmacology Section, CNR, Institute of Neurological Sciences, Roccelletta di Borgia, Catanzaro, Italy
| | - Emilio Russo
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy.
| | - Giovambattista De Sarro
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| |
Collapse
|
12
|
Löscher W. The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments. Neuropharmacology 2019; 167:107605. [PMID: 30980836 DOI: 10.1016/j.neuropharm.2019.04.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
A variety of acute brain insults can induce epileptogenesis, a complex process that results in acquired epilepsy. Despite advances in understanding mechanisms of epileptogenesis, there is currently no approved treatment that prevents the development or progression of epilepsy in patients at risk. The current concept of epileptogenesis assumes a window of opportunity following acute brain insults that allows intervention with preventive treatment. Recent results suggest that injury-induced epileptogenesis can be a much more rapid process than previously thought, suggesting that the 'therapeutic window' may only be open for a brief period, as in stroke therapy. However, experimental data also suggest a second, possibly delayed process ("secondary epileptogenesis") that influences the progression and refractoriness of the epileptic state over time, allowing interfering with this process even after onset of epilepsy. In this review, both methodological issues in preclinical drug development and novel targets for antiepileptogenesis will be discussed. Several promising drugs that either prevent epilepsy (antiepileptogenesis) or slow epilepsy progression and alleviate cognitive or behavioral comorbidities of epilepsy (disease modification) have been described in recent years, using diverse animal models of acquired epilepsy. Promising agents include TrkB inhibitors, losartan, statins, isoflurane, anti-inflammatory and anti-oxidative drugs, the SV2A modulator levetiracetam, and epigenetic interventions. Research on translational target validity and on prognostic biomarkers that can be used to stratify patients (or experimental animals) at high risk of developing epilepsy will hopefully soon lead to proof-of-concept clinical trials with the most promising drugs, which will be essential to make prevention of epilepsy a reality. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
13
|
Perampanel chronic treatment does not induce tolerance and decreases tolerance to clobazam in genetically epilepsy prone rats. Epilepsy Res 2018; 146:94-102. [DOI: 10.1016/j.eplepsyres.2018.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/08/2018] [Accepted: 07/24/2018] [Indexed: 11/24/2022]
|
14
|
Russo E, Citraro R. Pharmacology of epileptogenesis and related comorbidities in the WAG/Rij rat model of genetic absence epilepsy. J Neurosci Methods 2018; 310:54-62. [PMID: 29857008 DOI: 10.1016/j.jneumeth.2018.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/23/2023]
Abstract
Animal studies currently represent the best source of information also in the field of epileptogenesis research. Many animal models have been proposed and studied so far both from the pathophysiological and pharmacological point of view. Furthermore, they are widely used for the identification of potentially clinically valuable biomarkers. The WAG/Rij rat model, similarly to other genetic animal strains, represents a suitable animal model of absence epileptogenesis accompanied by depressive-like and cognitive comorbidities. Generally, animal models of epileptogenesis are characterized by an identifiable initial insult (e.g. traumatic brain injury), a latent phase lasting up to the appearance of the first spontaneous seizure and a chronic phase characterized by recurrent spontaneous seizures. In most of genetic models: the initial insult should be defined as the mutation causing epilepsy, which is not clearly defined in the WAG/Rij rat model; the latent phase ends at the appearance of the first spontaneous seizure, which is about 2-3 months of age in WAG/Rij rats and thereafter the chronic phase. WAG/Rij rats also display depressive-like comorbidity around the age of 4 months, which is apparently linked to the development of absence seizures considering both its ontogeny and the fact that drugs affecting absence seizures development also block the development of depressive-like behavior. Finally, WAG/Rij rats also display cognitive impairment in some memory tasks, however, this has not been yet definitively linked to absence seizures development and may represent an epiphenomenon. This review is focused on the effects of pharmacological treatments against epileptogenesis and their effects on comorbidities.
Collapse
Affiliation(s)
- Emilio Russo
- Science of Health Department, School of Medicine, University of Catanzaro, Italy.
| | - Rita Citraro
- Science of Health Department, School of Medicine, University of Catanzaro, Italy
| |
Collapse
|
15
|
Leo A, Citraro R, Amodio N, De Sarro C, Gallo Cantafio ME, Constanti A, De Sarro G, Russo E. Fingolimod Exerts only Temporary Antiepileptogenic Effects but Longer-Lasting Positive Effects on Behavior in the WAG/Rij Rat Absence Epilepsy Model. Neurotherapeutics 2017; 14:1134-1147. [PMID: 28653281 PMCID: PMC5722759 DOI: 10.1007/s13311-017-0550-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
One of the major challenges in the epilepsy field is identifying disease-modifying drugs in order to prevent or delay spontaneous recurrent seizure onset or to cure already established epilepsy. It has been recently reported that fingolimod, currently approved for the treatment of relapsing-remitting multiple sclerosis, has demonstrated antiepileptogenic effects in 2 different preclinical models of acquired epilepsy. However, to date, no data exist regarding the role of fingolimod against genetic epilepsy. Therefore, we have addressed this issue by studying the effects of fingolimod in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats, a well-established genetic model of absence epilepsy, epileptogenesis, and neuropsychiatric comorbidity. Our results have demonstrated that an early long-term treatment with fingolimod (1 mg/kg/day), started before absence seizure onset, has both antiepileptogenic and antidepressant-like effects in WAG/Rij rats. However, these effects were transitory, as 5 months after treatment discontinuation, both absence seizure and depressive like-behavior returned to control levels. Furthermore, a temporary reduction of mTOR signaling pathway activity, indicated by reduced phosphorylated mammalian target of rapamycin and phosphorylated p70S6k levels, and by increased phosphorylated Akt in WAG/Rij rats of 6 months of age accompanied the transitory antiepileptogenic effects of fingolimod. Surprisingly, fingolimod has demonstrated longer-lasting positive effects on cognitive decline in this strain. This effect was accompanied by an increased acetylation of lysine 8 of histone H4 (at both 6 and 10 months of age). In conclusion, our results support the antiepileptogenic effects of fingolimod. However, the antiepileptogenic effects were transitory. Moreover, fingolimod might also have a positive impact on animal behavior and particularly in protecting the development of memory decline.
Collapse
Affiliation(s)
- Antonio Leo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Caterina De Sarro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| |
Collapse
|
16
|
Palleria C, Leo A, Andreozzi F, Citraro R, Iannone M, Spiga R, Sesti G, Constanti A, De Sarro G, Arturi F, Russo E. Liraglutide prevents cognitive decline in a rat model of streptozotocin-induced diabetes independently from its peripheral metabolic effects. Behav Brain Res 2017; 321:157-169. [PMID: 28062257 DOI: 10.1016/j.bbr.2017.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/23/2016] [Accepted: 01/01/2017] [Indexed: 12/13/2022]
Abstract
Diabetes has been identified as a risk factor for cognitive dysfunctions. Glucagone like peptide 1 (GLP-1) receptor agonists have neuroprotective effects in preclinical animal models. We evaluated the effects of GLP-1 receptor agonist, liraglutide (LIR), on cognitive decline associated with diabetes. Furthermore, we studied LIR effects against hippocampal neurodegeneration induced by streptozotocin (STZ), a well-validated animal model of diabetes and neurodegeneration associated with cognitive decline. Diabetes and/or cognitive decline were induced in Wistar rats by intraperitoneal or intracerebroventricular injection of STZ and then rats were treated with LIR (300μg/kg daily subcutaneously) for 6 weeks. Rats underwent behavioral tests: Morris water maze, passive avoidance, forced swimming (FST), open field, elevated plus maze, rotarod tests. Furthermore, LIR effects on hippocampal neurodegeneration and mTOR pathway (AKT, AMPK, ERK and p70S6K) were assessed. LIR improved learning and memory only in STZ-treated animals. Anxiolytic effects were observed in all LIR-treated groups but pro-depressant effects in CTRL rats were observed. At a cellular/molecular level, intracerebroventricular STZ induced hippocampal neurodegeneration accompanied by decreased phosphorylation of AMPK, AKT, ERK and p70S6K. LIR reduced hippocampal neuronal death and prevented the decreased phosphorylation of AKT and p70S6K; AMPK was hyper-phosphorylated in comparison to CTRL group, while LIR had no effects on ERK. LIR reduced animal endurance in the rotarod test and this effect might be also linked to a reduction in locomotor activity during only the last two minutes of the FST. LIR had protective effects on cognitive functions in addition to its effects on blood glucose levels. LIR effects in the brain also comprised anxiolytic and pro-depressant actions (although influenced by reduced endurance). Finally, LIR protected from diabetes-dependent hippocampal neurodegeneration likely through an effect on mTOR pathway.
Collapse
Affiliation(s)
- Caterina Palleria
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Antonio Leo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100, Viale Europa, Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Michelangelo Iannone
- CNR, Institute of Neurological Sciences, Pharmacology Section, Roccelletta di Borgia, Catanzaro, Italy
| | - Rosangela Spiga
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100, Viale Europa, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100, Viale Europa, Catanzaro, Italy
| | - Andrew Constanti
- Department of Pharmacology, UCL School of Pharmacy, 29/39 Brunswick Square, London, UK
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100, Viale Europa, Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy.
| |
Collapse
|
17
|
Russo E, Citraro R, Constanti A, Leo A, Lüttjohann A, van Luijtelaar G, De Sarro G. Upholding WAG/Rij rats as a model of absence epileptogenesis: Hidden mechanisms and a new theory on seizure development. Neurosci Biobehav Rev 2016; 71:388-408. [DOI: 10.1016/j.neubiorev.2016.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 09/19/2016] [Indexed: 02/06/2023]
|
18
|
Coelho VR, Sousa K, Pires TR, Papke DKM, Vieira CG, de Souza LP, Leal MB, Schunck RVA, Picada JN, Pereira P. Genotoxic and mutagenic effects of vigabatrin, a γ-aminobutyric acid transaminase inhibitor, in Wistar rats submitted to rotarod task. Hum Exp Toxicol 2016; 35:958-65. [DOI: 10.1177/0960327115611970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vigabatrin (VGB) is an antiepileptic drug thatincreases brain γ-aminobutyric acid (GABA) levels through irreversible inhibition of GABA transaminase. The aim of this study was to evaluate neurotoxicological effects of VGB measuring motor activity and genotoxic and mutagenic effects after a single and repeated administration. Male Wistar rats received saline, VGB 50, 100, or 250 mg/kg by gavage for acute and subchronic (14 days) treatments and evaluated in the rotarod task. Genotoxicity was evaluated using the alkaline version of the comet assay in samples of blood, liver, hippocampus, and brain cortex after both treatments. Mutagenicity was evaluated using the micronucleus test in bone marrow of the same animals that received subchronic treatment. The groups treated with VGB showed similar performance in rotarod compared with the saline group. Regarding the acute treatment, it was observed that only higher VGB doses induced DNA damage in blood and hippocampus. After the subchronic treatment, VGB did not show genotoxic or mutagenic effects. In brief, VGB did not impair motor activities in rats after acute and subchronic treatments. It showed a repairable genotoxic potential in the central nervous system since genotoxicity was observed in the acute treatment group.
Collapse
Affiliation(s)
- VR Coelho
- Laboratory of Neuropharmacology and Preclinical Toxicology, Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande doSul, Porto Alegre, Brazil
| | - K Sousa
- Laboratory of Genetic Toxicology, Lutheran University of Brazil, Canoas, Brazil
| | - TR Pires
- Laboratory of Genetic Toxicology, Lutheran University of Brazil, Canoas, Brazil
| | - DKM Papke
- Laboratory of Genetic Toxicology, Lutheran University of Brazil, Canoas, Brazil
| | - CG Vieira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande doSul, Porto Alegre, Brazil
| | - LP de Souza
- Laboratory of Neuropharmacology and Preclinical Toxicology, Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande doSul, Porto Alegre, Brazil
| | - MB Leal
- Laboratory of Pharmacology and Toxicology of Natural Products, Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - RVA Schunck
- Laboratory of Pharmacology and Toxicology of Natural Products, Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - JN Picada
- Laboratory of Genetic Toxicology, Lutheran University of Brazil, Canoas, Brazil
| | - P Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande doSul, Porto Alegre, Brazil
| |
Collapse
|
19
|
Russo E, Leo A, Crupi R, Aiello R, Lippiello P, Spiga R, Chimirri S, Citraro R, Cuzzocrea S, Constanti A, De Sarro G. Everolimus improves memory and learning while worsening depressive- and anxiety-like behavior in an animal model of depression. J Psychiatr Res 2016; 78:1-10. [PMID: 27019134 DOI: 10.1016/j.jpsychires.2016.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
Everolimus (EVR) is an orally-administered rapamycin analog that selectively inhibits the mammalian target of rapamycin (mTOR) kinase (mainly mTORC1 and likely mTORC2) and the related signaling pathway. mTOR is a serine/threonine protein kinase regulating multiple important cellular functions; dysfunction of mTOR signaling has also been implicated in the pathophysiology of several neurological, neurodegenerative, developmental and cognitive disorders. EVR is widely used as an anti-neoplastic therapy and more recently in children with tuberous sclerosis complex (TSC). However, no clear correlation exists between EVR use and development of central side effects e.g. depression, anxiety or cognitive impairment. We studied the effects of a 3 weeks administration of EVR in mice chronically treated with betamethasone 21-phosphate disodium (BTM) as a model of depression and cognitive decline. EVR treatment had detrimental effects on depressive- and anxiety-like behavior while improving cognitive performance in both control (untreated) and BTM-treated mice. Such effects were accompanied by an increased hippocampal neurogenesis and synaptogenesis. Our results therefore might support the proposed pathological role of mTOR dysregulation in depressive disorders and confirm some previous data on the positive effects of mTOR inhibition in cognitive decline. We also show that EVR, possibly through mTOR inhibition, may be linked to the development of anxiety. The increased hippocampal neurogenesis by EVR might explain its ability to improve cognitive function or protect from cognitive decline. Our findings suggest some caution in the use of EVR, particularly in the developing brain; patients should be carefully monitored for their psychiatric/neurological profiles in any clinical situation where an mTOR inhibitor and in particular EVR is used e.g. cancer treatment, TSC or immunosuppression.
Collapse
Affiliation(s)
- Emilio Russo
- Science of Health Department, School of Medicine, University of Catanzaro, Italy.
| | - Antonio Leo
- Science of Health Department, School of Medicine, University of Catanzaro, Italy
| | - Rosalia Crupi
- Department of Biological and Environmental Science, University of Messina, Italy
| | - Rossana Aiello
- Science of Health Department, School of Medicine, University of Catanzaro, Italy
| | | | - Rosangela Spiga
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100, Viale Europa, Catanzaro, Italy
| | - Serafina Chimirri
- Science of Health Department, School of Medicine, University of Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine, University of Catanzaro, Italy
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Science, University of Messina, Italy
| | - Andrew Constanti
- Department of Pharmacology, UCL School of Pharmacy, 29/39 Brunswick Square, London, United Kingdom
| | | |
Collapse
|
20
|
The anti-absence effect of mGlu5 receptor amplification with VU0360172 is maintained during and after antiepileptogenesis. Pharmacol Biochem Behav 2016; 146-147:50-9. [PMID: 27178815 DOI: 10.1016/j.pbb.2016.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/15/2016] [Accepted: 05/09/2016] [Indexed: 01/19/2023]
|
21
|
Banach M, Popławska M, Błaszczyk B, Borowicz KK, Czuczwar SJ. Pharmacokinetic/pharmacodynamic considerations for epilepsy - depression comorbidities. Expert Opin Drug Metab Toxicol 2016; 12:1067-80. [PMID: 27267259 DOI: 10.1080/17425255.2016.1198319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Epilepsy may be frequently associated with psychiatric disorders and its co-existence with depression usually results in the reduced quality of life of patients with epilepsy. Also, the efficacy of antiepileptic treatment in depressed patients with epilepsy may be significantly reduced. AREAS COVERED Results of experimental studies indicate that antidepressants co-administered with antiepileptic drugs may either increase their anticonvulsant activity, remain neutral or decrease the protective action of antiepileptic drugs in models of seizures. Apart from purely pharmacodynamic interactions, pharmacokinetic mechanisms have been proven to contribute to the final outcome. We report on clinical data regarding the pharmacokinetic interactions of enzyme-inducing antiepileptic drugs with various antidepressants, whose plasma concentration may be significantly reduced. On the other hand, antidepressants (especially selective serotonin reuptake inhibitors) may influence the metabolism of antiepileptics, in many cases resulting in the elevation of plasma concentration of antiepileptic drugs. EXPERT OPINION The preclinical data may provide valuable clues on how to combine these two groups of drugs - antidepressant drugs neutral or potentiating the anticonvulsant action of antiepileptics are recommended in this regard. Avoidance of antidepressants clearly decreasing the convulsive threshold or decreasing the anticonvulsant efficacy of antiepileptic drugs (f.e. bupropion or mianserin) in patients with epilepsy is recommended.
Collapse
Affiliation(s)
- Monika Banach
- a Experimental Neuropathophysiology Unit, Department of Pathophysiology , Medical University , Lublin , Poland
| | - Monika Popławska
- a Experimental Neuropathophysiology Unit, Department of Pathophysiology , Medical University , Lublin , Poland
| | - Barbara Błaszczyk
- b Faculty of Health Sciences , High School of Economics, Law and Medical Sciences , Kielce , Poland
| | - Kinga K Borowicz
- a Experimental Neuropathophysiology Unit, Department of Pathophysiology , Medical University , Lublin , Poland
| | - Stanisław J Czuczwar
- c Department of Pathophysiology , Medical University , Lublin , Poland.,d Department of Physiopathology , Institute of Rural Health , Lublin , Poland
| |
Collapse
|
22
|
Citraro R, Leo A, Constanti A, Russo E, De Sarro G. mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis. Pharmacol Res 2016; 107:333-343. [DOI: 10.1016/j.phrs.2016.03.039] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022]
|
23
|
Citraro R, Leo A, De Fazio P, De Sarro G, Russo E. Antidepressants but not antipsychotics have antiepileptogenic effects with limited effects on comorbid depressive-like behaviour in the WAG/Rij rat model of absence epilepsy. Br J Pharmacol 2015; 172:3177-88. [PMID: 25754610 DOI: 10.1111/bph.13121] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/22/2015] [Accepted: 02/21/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Two of the most relevant unmet needs in epilepsy are represented by the development of disease-modifying drugs able to affect epileptogenesis and/or the study of related neuropsychiatric comorbidities. No systematic study has investigated the effects of chronic treatment with antipsychotics or antidepressants on epileptogenesis. However, such drugs are known to influence seizure threshold. EXPERIMENTAL APPROACH We evaluated the effects of an early long-term treatment (ELTT; 17 weeks), started before seizure onset (P45), with fluoxetine (selective 5-HT-reuptake inhibitor), duloxetine (dual-acting 5-HT-noradrenaline reuptake inhibitor), haloperidol (typical antipsychotic drug), risperidone and quetiapine (atypical antipsychotic drugs) on the development of absence seizures and comorbid depressive-like behaviour in the WAG/Rij rat model. Furthermore, we studied the effects of these drugs on established absence seizures in adult (6-month-old) rats after a chronic 7 weeks treatment. KEY RESULTS ELTT with all antipsychotics did not affect the development of seizures, whereas, both ELTT haloperidol (1 mg · kg(-1) day(-1)) and risperidone (0.5 mg · kg(-1) day(-1)) increased immobility time in the forced swimming test and increased absence seizures only in adult rats (7 weeks treatment). In contrast, both fluoxetine (30 mg · kg(-1) day(-1)) and duloxetine (10-30 mg · kg(-1) day(-1)) exhibited clear antiepileptogenic effects. Duloxetine decreased and fluoxetine increased absence seizures in adult rats. Duloxetine did not affect immobility time; fluoxetine 30 mg · kg(-1) day(-1) reduced immobility time while at 10 mg · kg(-1) day(-1) an increase was observed. CONCLUSIONS AND IMPLICATIONS In this animal model, antipsychotics had no antiepileptogenic effects and might worsen depressive-like comorbidity, while antidepressants have potential antiepileptogenic effects even though they have limited effects on comorbid depressive-like behaviour.
Collapse
Affiliation(s)
- Rita Citraro
- Pharmacology Unit, Science of Health Department School of Medicine and Surgery, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Pharmacology Unit, Science of Health Department School of Medicine and Surgery, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Pasquale De Fazio
- Psichiatry Unit, Science of Health Department School of Medicine and Surgery, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- Pharmacology Unit, Science of Health Department School of Medicine and Surgery, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- Pharmacology Unit, Science of Health Department School of Medicine and Surgery, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| |
Collapse
|
24
|
Citraro R, Leo A, Marra R, De Sarro G, Russo E. Antiepileptogenic effects of the selective COX-2 inhibitor etoricoxib, on the development of spontaneous absence seizures in WAG/Rij rats. Brain Res Bull 2015; 113:1-7. [DOI: 10.1016/j.brainresbull.2015.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 11/25/2022]
|
25
|
Gulyaeva NV. Neuronal plasticity and epilepsy: modern concepts and mechanisms of epilepsy and depression comorbidity. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:148-153. [DOI: 10.17116/jnevro2015115112148-153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Citraro R, Leo A, Aiello R, Pugliese M, Russo E, De Sarro G. Comparative analysis of the treatment of chronic antipsychotic drugs on epileptic susceptibility in genetically epilepsy-prone rats. Neurotherapeutics 2015; 12:250-62. [PMID: 25404052 PMCID: PMC4322085 DOI: 10.1007/s13311-014-0318-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antipsychotic drugs (APs) are of great benefit in several psychiatric disorders, but they can be associated with various adverse effects, including seizures. To investigate the effects of chronic antipsychotic treatment on seizure susceptibility in genetically epilepsy-prone rats, some APs were administered for 7 weeks, and seizure susceptibility (audiogenic seizures) was evaluated once a week during treatment and for 5 weeks after drug withdrawal. Furthermore, acute and subchronic (5-day treatment) effects were also measured. Rats received haloperidol (0.2-1.0 mg/kg), clozapine (1-5 mg/kg), risperidone (0.03-0.50 mg/kg), quetiapine (2-10 mg/kg), aripriprazole (0.2-1.0 mg/kg), and olanzapine (0.13-0.66 mg/kg), and tested according to treatment duration. Acute administration of APs had no effect on seizures, whereas, after regular treatment, aripiprazole reduced seizure severity; haloperidol had no effects and all other APs increased seizure severity. In chronically treated rats, clozapine showed the most marked proconvulsant effects, followed by risperidone and olanzapine. Quetiapine and haloperidol had only modest effects, and aripiprazole was anticonvulsant. Finally, the proconvulsant effects lasted at least 2-3 weeks after treatment suspension; for aripiprazole, a proconvulsant rebound effect was observed. Taken together, these results indicate and confirm that APs might have the potential to increase the severity of audiogenic seizures but that aripiprazole may exert anticonvulsant effects. The use of APs in patients, particularly in patients with epilepsy, should be monitored for seizure occurrence, including during the time after cessation of therapy. Further studies will determine whether aripiprazole really has a potential as an anticonvulsant drug and might also be clinically relevant for epileptic patients with psychiatric comorbidities.
Collapse
Affiliation(s)
- Rita Citraro
- />Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Viale Europa – Germaneto, 88100 Catanzaro, Italy
| | - Antonio Leo
- />Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Viale Europa – Germaneto, 88100 Catanzaro, Italy
| | - Rossana Aiello
- />Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Viale Europa – Germaneto, 88100 Catanzaro, Italy
| | - Michela Pugliese
- />Department of Veterinary Science, University of Messina, Messina, Italy
| | - Emilio Russo
- />Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Viale Europa – Germaneto, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- />Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Viale Europa – Germaneto, 88100 Catanzaro, Italy
| |
Collapse
|
27
|
Early molecular and behavioral response to lipopolysaccharide in the WAG/Rij rat model of absence epilepsy and depressive-like behavior, involves interplay between AMPK, AKT/mTOR pathways and neuroinflammatory cytokine release. Brain Behav Immun 2014; 42:157-68. [PMID: 24998197 DOI: 10.1016/j.bbi.2014.06.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway has been recently indicated as a suitable drug target for the prevention of epileptogenesis. The mTOR pathway is known for its involvement in the control of the immune system. Since neuroinflammation is recognized as a major contributor to epileptogenesis, we wished to examine whether the neuroprotective effects of mTOR modulation could involve a suppression of the neuroinflammatory process in epileptic brain. We have investigated the early molecular mechanisms involved in the effects of intracerebral administration of the lipopolysaccharide (LPS) in the WAG/Rij rat model of absence epilepsy, in relation to seizure generation and depressive-like behavior; we also tested whether the effects of LPS could be modulated by treatment with rapamycin (RAP), a specific mTOR inhibitor. We determined, in specific rat brain areas, levels of p-mTOR/p-p70S6K and also p-AKT/p-AMPK as downstream or upstream indicators of mTOR activity and tested the effects of LPS and RAP co-administration. Changes in the brain levels of pro-inflammatory cytokines IL-1β and TNF-α and their relative mRNA expression levels were measured, and the involvement of nuclear factor-κB (NF-κB) was also examined in vitro. We confirmed that RAP inhibits the aggravation of absence seizures and depressive-like/sickness behavior induced by LPS in the WAG/Rij rats through the activation of mTOR and show that this effect is correlated with the ability of RAP to dampen and delay LPS increases in neuroinflammatory cytokines IL-1β and TNF-α, most likely through inhibition of the activation of NF-κB. Our results suggest that such a mechanism could contribute to the antiseizure, antiepileptogenic and behavioral effects of RAP and further highlight the potential therapeutic usefulness of mTOR inhibition in the management of human epilepsy and other neurological disorders. Furthermore, we show that LPS-dependent neuroinflammatory effects are also mediated by a complex interplay between AKT, AMPK and mTOR with specificity to selective brain areas. In conclusion, neuroinflammation appears to be a highly coordinated phenomenon, where timing of intervention may be carefully evaluated in order to identify the best suitable target.
Collapse
|
28
|
Citraro R, Chimirri S, Aiello R, Gallelli L, Trimboli F, Britti D, De Sarro G, Russo E. Protective effects of some statins on epileptogenesis and depressive-like behavior in WAG/Rij rats, a genetic animal model of absence epilepsy. Epilepsia 2014; 55:1284-91. [DOI: 10.1111/epi.12686] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Rita Citraro
- Science of Health Department; School of Medicine; University “Magna Graecia” of Catanzaro; Catanzaro Italy
| | - Serafina Chimirri
- Science of Health Department; School of Medicine; University “Magna Graecia” of Catanzaro; Catanzaro Italy
| | - Rossana Aiello
- Science of Health Department; School of Medicine; University “Magna Graecia” of Catanzaro; Catanzaro Italy
| | - Luca Gallelli
- Science of Health Department; School of Medicine; University “Magna Graecia” of Catanzaro; Catanzaro Italy
| | - Francesca Trimboli
- Science of Health Department; School of Medicine; University “Magna Graecia” of Catanzaro; Catanzaro Italy
| | - Domenico Britti
- Science of Health Department; School of Medicine; University “Magna Graecia” of Catanzaro; Catanzaro Italy
| | - Giovambattista De Sarro
- Science of Health Department; School of Medicine; University “Magna Graecia” of Catanzaro; Catanzaro Italy
| | - Emilio Russo
- Science of Health Department; School of Medicine; University “Magna Graecia” of Catanzaro; Catanzaro Italy
| |
Collapse
|
29
|
Pitkänen A, Huusko N, Ndode-Ekane XE, Kyyriäinen J, Lipponen A, Lipsanen A, Sierra A, Bolkvadze T. Gender issues in antiepileptogenic treatments. Neurobiol Dis 2014; 72 Pt B:224-32. [PMID: 24912075 DOI: 10.1016/j.nbd.2014.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/23/2014] [Accepted: 05/29/2014] [Indexed: 12/12/2022] Open
Abstract
Disease modification of epilepsy refers to the alleviation of epileptogenesis or comorbidities after genetic or acquired epileptogenic brain insults. There are currently 30 proof-of-concept experimental pharmacologic studies that have demonstrated some beneficial disease-modifying effects. None of these studies, however, has yet passed from the laboratory to the clinic. The International League Against Epilepsy and American Epilepsy Society working groups on antiepileptogenic (AEG) therapies recently released recommendations for conducting preclinical AEG studies, taking into account many of the critiques raised by previous study designs. One of the issues relates to the lack of analysis of AEG efficacy in both sexes. A review of the literature reveals that most of the preclinical studies have been performed using male rodents, whereas clinical study cohorts include both males and females. Therefore, it is important to determine whether sex differences should be taken into account to a greater extent than they have been historically at different phases of experimental studies. Here we address the following questions based on analysis of available experimental AEG studies: (a) whether sex differences should be considered when searching for novel AEG targets, (b) how sex differences can affect the preclinical AEG study designs and analysis of outcome measures, and (c) what factors should be considered when examining the effect of sex on outcome of clinical AEG trials or the clinical use of AEGs.
Collapse
Affiliation(s)
- Asla Pitkänen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, PO Box 1777, FIN-70211 Kuopio, Finland.
| | - Noora Huusko
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Xavier Ekolle Ndode-Ekane
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Jenni Kyyriäinen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Anssi Lipponen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Anu Lipsanen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Alejandra Sierra
- Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern, Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Tamuna Bolkvadze
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
30
|
Russo E, Follesa P, Citraro R, Camastra C, Donato A, Isola D, Constanti A, De Sarro G, Donato G. The mTOR signaling pathway and neuronal stem/progenitor cell proliferation in the hippocampus are altered during the development of absence epilepsy in a genetic animal model. Neurol Sci 2014; 35:1793-9. [DOI: 10.1007/s10072-014-1842-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
|
31
|
Abstract
Descriptions of epileptic seizures and epilepsy date back to antiquity, and research into fundamental mechanisms of epilepsy in animal models, as well as patients, has been carried out for over a century. Studies of epileptogenesis, however, as distinct from ictogenesis, have been pursued for only a few decades, and antiepileptogenesis, the prevention of epilepsy or its progression, and the reversal of the epileptogenic process or cure, are relatively recent interests of the basic research community. The goal to develop antiepileptogenic interventions would be greatly facilitated by the identification of reliable biomarkers of epileptogenesis that could be used to create cost-effective, high-throughput screening models for potential antiepileptogenic compounds, as well as enrich patient populations and serve as surrogate endpoints for clinical trials. Without such biomarkers, the cost for clinical validation of antiepileptogenic interventions would be prohibitive. Epileptogenic mechanisms, antiepileptogenic interventions, and biomarkers are likely to be specific for the many different causes of epilepsy, which include genetic influences, cell loss and synaptic plasticity, malformations of cortical development, and autoimmune disorders, to name but a few. A high priority is currently being placed on investigations to elucidate fundamental mechanisms of epileptogenesis and identify biomarkers for specific models of human epilepsy, such as mesial temporal lobe epilepsy with hippocampal sclerosis, traumatic brain injury, and a variety of pediatric diseases, including tuberous sclerosis and West syndrome.
Collapse
Affiliation(s)
- Asla Pitkänen
- />Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- />Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Jerome Engel
- />Department of Neurology, Neurobiology, and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769 USA
| |
Collapse
|
32
|
Siniscalchi A, Gallelli L, Russo E, De Sarro G. A review on antiepileptic drugs-dependent fatigue: pathophysiological mechanisms and incidence. Eur J Pharmacol 2013; 718:10-6. [PMID: 24051268 DOI: 10.1016/j.ejphar.2013.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/29/2013] [Accepted: 09/04/2013] [Indexed: 02/04/2023]
Abstract
Fatigue represents a common side effect of several drugs, however, the underlying mechanisms have not been well identified. A depression of the central nervous system (CNS) and/or changes in peripheral processes have been associated with the development of fatigue. Antiepileptic drugs (AEDs), generally decreasing CNS excitability, are used in the treatment of seizures as well as other neurological and psychiatric diseases. Fatigue is certainly a common AEDs' side effect, although a high degree of variability exists depending on both patients' characteristics and the drug used. Here, we delineate the pathophysiological central and peripheral mechanisms by which AEDs may cause fatigue also reviewing the available clinical data in order to assess a possible AEDs rank and highlight each AEDs related risk. It appears that drugs acting on the GABAergic system have the highest incidence (with tiagabine exception) of fatigue followed by Gabapentin and Levetiracetam whereas drugs mainly inhibiting sodium channels (Carbamazepine, Eslicarbazepine, Lamotrigine, Phenytoin and Valproate) have the lowest. However, the dose used, AEDs related side effects and patients' characteristics might influence the degree of fatigue observed.
Collapse
Affiliation(s)
- Antonio Siniscalchi
- Department of Neuroscience, Neurology Division, Annunziata Hospital, Cosenza, Italy
| | | | | | | |
Collapse
|
33
|
van Luijtelaar G, Mishra AM, Edelbroek P, Coman D, Frankenmolen N, Schaapsmeerders P, Covolato G, Danielson N, Niermann H, Janeczko K, Kiemeneij A, Burinov J, Bashyal C, Coquillette M, Lüttjohann A, Hyder F, Blumenfeld H, van Rijn CM. Anti-epileptogenesis: Electrophysiology, diffusion tensor imaging and behavior in a genetic absence model. Neurobiol Dis 2013; 60:126-38. [PMID: 23978468 DOI: 10.1016/j.nbd.2013.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022] Open
Abstract
The beneficial effects of chronic and early pharmacological treatment with ethosuximide on epileptogenesis were studied in a genetic absence epilepsy model comorbid for depression. It was also investigated whether there is a critical treatment period and treatment length. Cortical excitability in the form of electrical evoked potentials, but also to cortico-thalamo-cortical network activity (spike-wave discharges, SWD and afterdischarges), white matter changes representing extra cortico-thalamic functions and depressive-like behavior were investigated. WAG/Rij rats received either ethosuximide for 2 months (post natal months 2-3 or 4-5), or ethosuximide for 4 months (2-5) in their drinking water, while control rats drank plain water. EEG measurements were made during treatment, and 6 days and 2 months post treatment. Behavioral test were also done 6 days post treatment. DTI was performed ex vivo post treatment. SWD were suppressed during treatment, and 6 days and 2 months post treatment in the 4 month treated group, as well as the duration of AD elicited by cortical electrical stimulation 6 days post treatment. Increased fractional anisotropy in corpus callosum and internal capsula on DTI was found, an increased P8 evoked potential amplitude and a decreased immobility in the forced swim test. Shorter treatments with ETX had no large effects on any parameter. Chronic ETX has widespread effects not only within but also outside the circuitry in which SWD are initiated and generated, including preventing epileptogenesis and reducing depressive-like symptoms. The treatment of patients before symptom onset might prevent many of the adverse consequences of chronic epilepsy.
Collapse
Affiliation(s)
- Gilles van Luijtelaar
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Russo E, Chimirri S, Aiello R, De Fazio S, Leo A, Rispoli V, Marra R, Labate A, De Fazio P, Citraro R, De Sarro G. Lamotrigine positively affects the development of psychiatric comorbidity in epileptic animals, while psychiatric comorbidity aggravates seizures. Epilepsy Behav 2013; 28:232-40. [PMID: 23773980 DOI: 10.1016/j.yebeh.2013.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/02/2013] [Accepted: 05/04/2013] [Indexed: 02/07/2023]
Abstract
Several clinical and preclinical studies have focused on the relationship between epilepsy and psychological disturbances. Although behavior in some experimental models of epilepsy has been studied, only few of them can be considered as models of epilepsy and mood disorder comorbidity. Since several models of epilepsy or psychiatric disorders are already available, we wondered whether a mixture of the two could experimentally represent a valid alternative to study such comorbidity. Here, we present a possible experimental protocol to study drug effects and physiopathogenesis of psychiatric comorbidity in epileptic animals. Pentylentetrazol-kindled animals were subjected to the chronic mild stress (CMS) procedure; furthermore, we tested the effects of chronic lamotrigine treatment on the development of comorbidity. We found that epileptic-depressed animals showed more pronounced behavioral alterations in comparison to other mice groups, indicating that kindled animals develop more pronounced CMS-induced behavioral alterations than nonepileptic mice; lamotrigine was able to prevent the development of comorbidities such as anxiety, depression-like behavior, and memory impairment.
Collapse
Affiliation(s)
- Emilio Russo
- Science of Health Department, School of Medicine, University of Catanzaro, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Citraro R, Russo E, Ngomba RT, Nicoletti F, Scicchitano F, Whalley BJ, Calignano A, De Sarro G. CB1 agonists, locally applied to the cortico-thalamic circuit of rats with genetic absence epilepsy, reduce epileptic manifestations. Epilepsy Res 2013; 106:74-82. [PMID: 23860329 DOI: 10.1016/j.eplepsyres.2013.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/04/2013] [Accepted: 06/18/2013] [Indexed: 12/22/2022]
Abstract
Drugs that modulate the endocannabinoid system and endocannabinoids typically play an anticonvulsant role although some proconvulsant effects have been reported both in humans and animal models. Moreover, no evidence for a role of the cannabinoid system in human absence epilepsy has been found although limited evidence of efficacy in relevant experimental animal models has been documented. This study aims to characterize the role of cannabinoids in specific areas of the cortico-thalamic network involved in oscillations that underlie seizures in a genetic animal model of absence epilepsy, the WAG/Rij rat. We assessed the effects of focal injection of the endogenous cannabinoid, anandamide (AEA), a non-selective CB receptor agonist (WIN55,212) and a selective CB1 receptor antagonist/inverse agonist (SR141716A) into thalamic nuclei and primary somatosensory cortex (S1po) of the cortico-thalamic network. AEA and WIN both reduced absence seizures independently from the brain focal site of infusion while, conversely, rimonabant increased absence seizures but only when focally administered to the ventroposteromedial thalamic nucleus (VPM). These results, together with previous reports, support therapeutic potential for endocannabinoid system modulators in absence epilepsy and highlight that attenuated endocannabinergic function may contribute to the generation and maintenance of seizures. Furthermore, the entire cortico-thalamic network responds to cannabinoid treatment, indicating that in all areas considered, CB receptor activation inhibits the pathological synchronization that subserves absence seizures. In conclusion, our result might be useful for the identification of future drug therapies in absence epilepsy.
Collapse
Affiliation(s)
- Rita Citraro
- Chair of Pharmacology, Department of Health Science, School of Medicine and Surgery, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Russo E, Citraro R, Donato G, Camastra C, Iuliano R, Cuzzocrea S, Constanti A, De Sarro G. mTOR inhibition modulates epileptogenesis, seizures and depressive behavior in a genetic rat model of absence epilepsy. Neuropharmacology 2013; 69:25-36. [DOI: 10.1016/j.neuropharm.2012.09.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/07/2012] [Accepted: 09/29/2012] [Indexed: 12/27/2022]
|
37
|
Nemeth CL, Harrell CS, Beck KD, Neigh GN. Not all depression is created equal: sex interacts with disease to precipitate depression. Biol Sex Differ 2013; 4:8. [PMID: 23594674 PMCID: PMC3639119 DOI: 10.1186/2042-6410-4-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/22/2013] [Indexed: 12/28/2022] Open
Abstract
Depression is a common mental disorder that co-occurs in other neurological and somatic diseases. Further, sex differences exist in the prevalence rates of many of these diseases, as well as within non-disease associated depression. In this review, the case is made for needing a better recognition of the source of the symptoms of depression with respect to the sex of the individual; in that, some disease states, which includes the neuroendocrine and immune reactions to the underlying pathophysiology of the disease, may initiate depressive symptoms more often in one sex over the other. The diseases specifically addressed to make this argument are: epilepsy, Alzheimer’s disease, cancer, and cardiovascular disease. For each of these conditions, a review of the following are presented: prevalence rates of the conditions within each sex, prevalence rates of depressive symptoms within the conditions, identified relationships to gonadal hormones, and possible interactions between gonadal hormones, adrenal hormones, and immune signaling. Conclusions are drawn suggesting that an evaluation of the root causes for depressive symptoms in patients with these conditions is necessary, as the underlying mechanisms for eliciting the depressive symptoms may be qualitatively different across the four diseases discussed. This review attempts to identify and understand the mechanisms of depression associated with these diseases, in the context of the known sex differences in the disease prevalence and its age of onset. Hence, more extensive, sex-specific model systems are warranted that utilize these disease states to elicit depressive symptoms in order to create more focused, efficient, and sex-specific treatments for patients suffering from these diseases and concurrent depressive symptoms.
Collapse
|
38
|
Ameliorating effects of aripiprazole on cognitive functions and depressive-like behavior in a genetic rat model of absence epilepsy and mild-depression comorbidity. Neuropharmacology 2013; 64:371-9. [DOI: 10.1016/j.neuropharm.2012.06.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 01/01/2023]
|
39
|
Protective activity of α-lactoalbumin (ALAC), a whey protein rich in tryptophan, in rodent models of epileptogenesis. Neuroscience 2012; 226:282-8. [PMID: 23000629 DOI: 10.1016/j.neuroscience.2012.09.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/07/2012] [Accepted: 09/07/2012] [Indexed: 11/23/2022]
Abstract
The aim of the present work was to evaluate the potential activity of α-lactoalbumin (ALAC), a whey protein rich in tryptophan (TRP), in two rodent models of epileptogenesis and we explored a possible mechanism of action. The effects of ALAC (oral administration) were tested in two standard epileptogenesis protocols, namely the pilocarpine post-status epilepticus model in mice and the WAG/Rij rat model of absence epileptogenesis. The mechanism of action was investigated by assessing the effects of ALAC in two seizure models (N-methyl-d-aspartate (NMDA) and pentylenetetrazol (PTZ) -induced seizures) including d-serine co-administration. ALAC showed protecting properties in both models of epileptogenesis, reducing spontaneous seizures development. In acute seizure models, ALAC possessed antiseizure properties at some of the doses tested (PTZ-seizures: >50% seizure-reduction between 250 and 375 mg/kg; NMDA-seizures: >90% reduction at 250 and 500 mg/kg). When a dose of d-serine ineffective per se was co-administered with ALAC, ALAC effects were significantly reversed in both models. ALAC is active in experimental models of seizure and epileptogenesis. Its effects are likely mediated by the inhibition of NMDA receptors at the glycine binding site, possibly secondarily to the in vivo enzymatic conversion of ALAC-generated tryptophan to kynurenic acid. However, other mechanisms of action contributing to ALAC effects cannot be excluded.
Collapse
|
40
|
Epps SA, Weinshenker D. Rhythm and blues: animal models of epilepsy and depression comorbidity. Biochem Pharmacol 2012; 85:135-46. [PMID: 22940575 DOI: 10.1016/j.bcp.2012.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 12/12/2022]
Abstract
Clinical evidence shows a strong, bidirectional comorbidity between depression and epilepsy that is associated with decreased quality of life and responsivity to pharmacotherapies. At present, the neurobiological underpinnings of this comorbidity remain hazy. To complicate matters, anticonvulsant drugs can cause mood disturbances, while antidepressant drugs can lower seizure threshold, making it difficult to treat patients suffering from both depression and epilepsy. Animal models have been created to untangle the mechanisms behind the relationship between these disorders and to serve as screening tools for new therapies targeted to treat both simultaneously. These animal models are based on chemical interventions (e.g. pentylenetetrazol, kainic acid, pilocarpine), electrical stimulations (e.g. kindling, electroshock), and genetic/selective breeding paradigms (e.g. genetically epilepsy-prone rats (GEPRs), genetic absence epilepsy rat from Strasbourg (GAERS), WAG/Rij rats, swim lo-active rats (SwLo)). Studies on these animal models point to some potential mechanisms that could explain epilepsy and depression comorbidity, such as various components of the dopaminergic, noradrenergic, serotonergic, and GABAergic systems, as well as key brain regions, like the amygdala and hippocampus. These models have also been used to screen possible therapies. The purpose of the present review is to highlight the importance of animal models in research on comorbid epilepsy and depression and to explore the contributions of these models to our understanding of the mechanisms and potential treatments for these disorders.
Collapse
Affiliation(s)
- S Alisha Epps
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
41
|
Jones NA, Glyn SE, Akiyama S, Hill TDM, Hill AJ, Weston SE, Burnett MDA, Yamasaki Y, Stephens GJ, Whalley BJ, Williams CM. Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures. Seizure 2012; 21:344-52. [PMID: 22520455 DOI: 10.1016/j.seizure.2012.03.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 01/21/2023] Open
Abstract
Cannabis sativa has been associated with contradictory effects upon seizure states despite its medicinal use by numerous people with epilepsy. We have recently shown that the phytocannabinoid cannabidiol (CBD) reduces seizure severity and lethality in the well-established in vivo model of pentylenetetrazole-induced generalised seizures, suggesting that earlier, small-scale clinical trials examining CBD effects in people with epilepsy warrant renewed attention. Here, we report the effects of pure CBD (1, 10 and 100mg/kg) in two other established rodent seizure models, the acute pilocarpine model of temporal lobe seizure and the penicillin model of partial seizure. Seizure activity was video recorded and scored offline using model-specific seizure severity scales. In the pilocarpine model CBD (all doses) significantly reduced the percentage of animals experiencing the most severe seizures. In the penicillin model, CBD (≥ 10 mg/kg) significantly decreased the percentage mortality as a result of seizures; CBD (all doses) also decreased the percentage of animals experiencing the most severe tonic-clonic seizures. These results extend the anti-convulsant profile of CBD; when combined with a reported absence of psychoactive effects, this evidence strongly supports CBD as a therapeutic candidate for a diverse range of human epilepsies.
Collapse
Affiliation(s)
- Nicholas A Jones
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AJ, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|