1
|
Zhang M, Qian X, Wei Z, Chen K, Ding H, Jia J, Li Y, Liu S, Yang K, Wang J, Chen H, Zhang W. Micro-Infusion of 5-HT1a Receptor Antagonists into the Ventral Subiculum Ameliorate MK-801 Induced Schizophrenia-Like Behavior in Rats. Neuroscience 2024; 552:115-125. [PMID: 38909674 DOI: 10.1016/j.neuroscience.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Recent studies have shown that the 5-HT1a receptor (5-HT1aR) in the central 5-HT (Serotonergic) system is involved in the pathophysiology of schizophrenia through its various receptors, and the dysfunction of the ventral hippocampus may be a key causative factor in schizophrenia. To date, whether the 5-HT1a receptor is involved in ventral hippocampal dysfunction and its internal mechanism remain unclear. In this study, schizophrenia-like animal model was induced by intraperitoneal injection of aspartate receptor antagonist MK-801 in male Sprague Dawley rats, and the role of 5-HT1aR in this animal model was investigated by bilaterally micro-infusing the 5-HT1aR antagonist WAY100635 into the ventral subiculum (vSub) of the hippocampus of rats. Behavioral experiments such as open field test (OFT) and prepulse inhibition (PPI) were performed. The results showed that MK-801 induced hyperactivity and impaired prepulse inhibition in rats, whereas, micro-infusion of 5-HT1aR antagonist WAY100635 into the vSub ameliorated these phenomena. Immunofluorescence analysis revealed that WAY100635 significantly increased the c-Fos expression in vSub. Western blot and immunohistochemical analysis showed that MK-801 induced up-regulation of 5-HT1aR and phospho-extracellular regulated protein kinase (p-ERK) pathway, while micro-infusion of the WAY100635 down-regulated 5-HT1aR and p-ERK in the vSub. Therefore, the results of the present study suggested that in vSub, the 5-HT1aR antagonist WAY100635 may attenuate MK-801-induced schizophrenia-like activity by modulating excitatory neurons and downregulating p-ERK.
Collapse
Affiliation(s)
- Mengyu Zhang
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Kunshan 215300, Jiangsu Province, PR China; School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Xin Qian
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Ziwei Wei
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Kai Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Hongqun Ding
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Junhai Jia
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Ying Li
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Siyu Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Kun Yang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Jia Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China.
| | - Huanxin Chen
- Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China.
| | - Weining Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Valipour H, Jahromi GP, Mohammadi A, Meftahi GH. Effects of the suppression of 5-HT 1A receptors in the left, right, or bilateral basolateral amygdala on memory consolidation in chronic stress in male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3049-3064. [PMID: 37874340 DOI: 10.1007/s00210-023-02790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
The serotonin-1A receptors (5-HT1A) in the two cerebral hemispheres are differentially involved in memory. The distribution of 5-HT1A receptors in the left and right amygdala is different. Furthermore, evidence shows that the 5-HT1A receptors in the left and right amygdala work differently in memory function. The basolateral amygdala (BLA) also regulates hippocampal long-term potentiation (LTP) during stress. However, which BLA structure in each hemisphere underlies such lateralized function is unclear. The present research investigated the possible involvement of 5-HT1A lateralization in the BLA on stress-induced memory impairment. 5-HT1A receptor antagonist (Way-100-635) was injected into the left, right, or bilateral BLA twenty minutes before chronic restraint stress (CRS) for 14 consecutive days. Results indicated that suppression of 5HT1A-receptors in the BLA plays an essential role in reducing the acquisition of passive avoidance in the shuttle box test and spatial memory in the Barnes maze test in the stress animals. This decrease was significant in the CRS animals with left and bilateral suppressed 5HT1A-receptors in the BLA. Field potential recording results showed that the left, right, and bilateral injection of Way-100-635 into the BLA significantly reduced the slope and amplitude of fEPSP in the CA1 area of the hippocampus in stressed rats. No significant difference was observed in neuronal arborization in the CA1 area of the hippocampus. In conclusion, the 5-HT1A receptor in the left and right sides of BLA nuclei play a different role in memory consolidation in the hippocampus under stress.
Collapse
Affiliation(s)
- Habib Valipour
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gila Pirzad Jahromi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Mohammadi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Valipour H, Meftahi GH, Pirzad Jahromi G, Mohammadi A. Lateralization of the 5-HT 1A receptors in the basolateral amygdala in metabolic and anxiety responses to chronic restraint stress. Amino Acids 2024; 56:13. [PMID: 38340185 PMCID: PMC10858818 DOI: 10.1007/s00726-023-03380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/24/2023] [Indexed: 02/12/2024]
Abstract
Behavioral and functional studies describe hemispheric asymmetry in anxiety and metabolic behaviors in responses to stress. However, no study has reported serotonergic receptor (the 5-HT1A receptor) lateralization in the basolateral amygdala (BLA) in vivo on anxiety and metabolic behaviors under stress. In the present study, the effect of unilateral and bilateral suppression of the 5-HT1A receptor in the BLA on anxiety, and metabolic responses to chronic restraint stress was assessed. Male Wistar rats 7 days after cannulation into the BLA received chronic restraint stress for 14 consecutive days. 20 minutes before induction of stress, WAY-100-635 (selective 5-HT1A antagonist) or sterile saline (vehicle) was administered either uni- or bi-laterally into the BLA. Behavioral (elevated plus maze; EPM, and open field test), and metabolic parameter studies were performed. Results showed that stress causes a significant increase in weight gain compared to control. In the non-stress condition, the left and bilaterally, and in the stress condition the right, left, and both sides, inhibition of 5-HT1A in the BLA reduced weight gain. In the restraint stress condition, only inhibition of the 5-HT1A receptor in the left BLA led to decreased food intake compared to the control group. In stress conditions, inhibition of the 5-HT1A receptor on the right, left, and bilateral BLA increased water intake compared to the stress group. Inhibition of the 5-HT1A receptor on the left side of the BLA by WAY-100-635 induced anxiety-like behaviors in stressed rats. Similarly, WAY-100-635 on the left BLA effectively caused anxiety-like behaviors in both EPM and open field tests in the control animals. In conclusion, it seems that 5-HT1A receptors in the left BLA are more responsible for anxiety-like behaviors and metabolic changes in responses to stress.
Collapse
Affiliation(s)
- Habib Valipour
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Gila Pirzad Jahromi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Mohammadi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Lin CC, Yang CP, Cheng PY, Hsiao M, Liu YP. Escitalopram reversibility of the impacts following chronic stress on central 5-HT profiles - Implications to depression and anxiety. Behav Brain Res 2023; 453:114613. [PMID: 37544369 DOI: 10.1016/j.bbr.2023.114613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Stress is considered a crucial determinant influencing health capacity in modern society. Long-term stress makes individuals more susceptible to mental dysfunctions, among which depression and anxiety are two major mental disorders. The success of using selective serotonin reuptake inhibitors (SSRIs) to treat these two disorders highlights the involvement of the central serotonergic (5-HT) system. Later studies suggest both presynaptic and postsynaptic 5-HT profiles should be considered for the effects of SSRIs, making it difficult to interpret the etiological and therapeutic mechanisms underlying depression and anxiety. The present study aims to examine whether the intervention of escitalopram (Es, 5 mg/kg daily for 14 days) can reverse the behavioral phenotypes of both depression-like [by sucrose preference test (SPT) and forced swim test (FST)] and anxiety-like [by avoidance latency and escape latency in elevated-T maze (ETM)] behaviors, and the brain area-dependent neurochemical changes of 5-HT profiles of the terminal regions regarding both synaptic efflux and tissue levels in rats of chronic mild stress (CMS). Our results showed that: (i) Even mild stresses when presented in an unpredictable and long-term manner, can induce both depression-like and anxiety-like behaviors. (ii) Depressive profile indexed by SPT was more sensitive to reflect the Es effect than that of FST. (iii) Es did not significantly affect the CMS-induced anxiety-like symptoms indexed by ETM. (iv) Changes in the protein expression of 5-HT1A receptors in the prefrontal cortex and hippocampus were compatible with the treatment outcome. Our results contributed to the understanding of stress-induced mood dysfunction and the involvement of central 5-HT.
Collapse
Affiliation(s)
- Chen-Cheng Lin
- Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan; Department of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Chiu-Ping Yang
- Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yia-Ping Liu
- Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei, Taiwan; Department of Physiology, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Esaki H, Sasaki Y, Nishitani N, Kamada H, Mukai S, Ohshima Y, Nakada S, Ni X, Deyama S, Kaneda K. Role of 5-HT 1A receptors in the basolateral amygdala on 3,4-methylenedioxymethamphetamine-induced prosocial effects in mice. Eur J Pharmacol 2023; 946:175653. [PMID: 36907260 DOI: 10.1016/j.ejphar.2023.175653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
3,4-methylenedioxymethamphetamine (MDMA), a recreational drug, induces euphoric sensations and psychosocial effects, such as increased sociability and empathy. Serotonin, also called 5-hydroxytryptamine (5-HT), is a neurotransmitter that has been associated with MDMA-induced prosocial effects. However, the detailed neural mechanisms remain elusive. In the present study, we investigated whether 5-HT neurotransmission in the medial prefrontal cortex (mPFC) and the basolateral nucleus of amygdala (BLA) is involved in MDMA-induced prosocial effects using the social approach test in male ICR mice. Systemic administration of (S)-citalopram, a selective 5-HT transporter inhibitor, before administration of MDMA failed to suppress MDMA-induced prosocial effects. On the other hand, systemic administration of the 5-HT1A receptor antagonist WAY100635, but not 5-HT1B, 5-HT2A, 5-HT2C, or 5-HT4 receptor antagonist, significantly suppressed MDMA-induced prosocial effects. Furthermore, local administration of WAY100635 into the BLA but not into the mPFC suppressed MDMA-induced prosocial effects. Consistent with this finding, intra-BLA MDMA administration significantly increased sociability. Together, these results suggest that MDMA induces prosocial effects through the stimulation of 5-HT1A receptors in the BLA.
Collapse
Affiliation(s)
- Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yuki Sasaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Hikari Kamada
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoko Mukai
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yoshitaka Ohshima
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Sao Nakada
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Xiyan Ni
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
6
|
Hernandes PM, Batistela MF, Vilela-Costa HH, Sant'Ana AB, Kumpel VD, Tirapelle MC, Bom ADOP, de Andrade TGCS, Zangrossi H. Role of 5-HT 1A receptors in the ventral hippocampus in the regulation of anxiety- and panic-related defensive behaviors in rats. Behav Brain Res 2021; 408:113296. [PMID: 33862061 DOI: 10.1016/j.bbr.2021.113296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 01/04/2023]
Abstract
Changes in 5-HT1A receptor (5-HT1AR)-mediated neurotransmission in the hippocampus have been associated with anxiety, depression and in the mode of action of antidepressant drugs. It has been commonly accepted that whereas the dorsal pole of the hippocampus (DH) is involved in cognitive processing, the ventral pole (VH) is associated with emotional regulation. However, to date, only a few studies have directly addressed the role played by VH 5-HT1ARs in anxiety and panic processing, and their results are conflicting. Here we report that intra-VH administration of the 5-HT1A receptor agonist 8-OH-DPAT, the endogenous agonist serotonin (5-HT), or the standard anxiolytic benzodiazepine midazolam impaired the acquisition of inhibitory avoidance in the elevated T-maze (ETM) of male Wistar rats, indicating an anxiolytic effect. Conversely, local injection of the 5-HT1AR antagonist WAY-100635 caused the opposite effect. These results were equally found in the Vogel conflict test. None of these drugs interfered with locomotor activity in the open-field test, nor did they alter the expression of the escape response in the ETM, a defensive behavior associated with panic. Pre-injection of a sub-effective dose of WAY-100635 in the VH blocked the anxiolytic effect of 5-HT or 8-OH-DPAT in the Vogel test, confirming the involvement of 5-HT1AR for this behavioral effect. The effect in this test was anxiety-selective as none of the drugs affected water consumption or nociception. In conclusion, our results suggest that 5-HT1ARs in the VH play a tonic inhibitory role in anxiety processing. These receptors, however, are not involved in the regulation of panic-related escape behavior.
Collapse
Affiliation(s)
- Paloma Molina Hernandes
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Matheus Fitipaldi Batistela
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Heloísa Helena Vilela-Costa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana Beatriz Sant'Ana
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Vinicíus Dias Kumpel
- Department of Biological Science, São Paulo State University (UNESP), Assis, SP, Brazil
| | | | | | | | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
Wang Z, Li C, Ding J, Li Y, Zhou Z, Huang Y, Wang X, Fan H, Huang J, He Y, Li J, Chen J, Qiu P. Basolateral Amygdala Serotonin 2C Receptor Regulates Emotional Disorder-Related Symptoms Induced by Chronic Methamphetamine Administration. Front Pharmacol 2021; 12:627307. [PMID: 33628192 PMCID: PMC7897655 DOI: 10.3389/fphar.2021.627307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
Globally, methamphetamine (MA) is the second most abused drug, with psychotic symptoms being one of the most common adverse effects. Emotional disorders induced by MA abuse have been widely reported both in human and animal models; however, the mechanisms underlying such disorders have not yet been fully elucidated. In this study, a chronic MA administration mouse model was utilized to elucidate the serotonergic pathway involved in MA-induced emotional disorders. After 4 weeks of MA administration, the animals exhibited significantly increased depressive and anxious symptoms. Molecular and morphological evidence showed that chronic MA administration reduced the expression of the 5-hydroxytryptamine (5-HT) rate-limiting enzyme, tryptophan hydroxylase 2, in the dorsal raphe and the concentrations of 5-HT and its metabolite 5-hydroxyindoleacetic acid in the basolateral amygdala (BLA) nuclei. Alterations in both 5-HT and 5-HT receptor levels occurred simultaneously in BLA; quantitative polymerase chain reaction, western blotting, and fluorescence analysis revealed that the expression of the 5-HT2C receptor (5-HT2CR) increased. Neuropharmacology and virus-mediated silencing strategies confirmed that targeting 5-HT2CR reversed the depressive and anxious behaviors induced by chronic MA administration. In the BLA, 5-HT2CR-positive cells co-localized with GABAergic interneurons. The inactivation of 5-HT2CR ameliorated impaired GABAergic inhibition and decreased BLA activation. Thus, herein, for the first time, we report that the abnormal regulation of 5-HT2CR is involved in the manifestation of emotional disorder-like symptoms induced by chronic MA use. Our study suggests that 5-HT2CR in the BLA is a promising clinical target for the treatment of MA-induced emotional disorders.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chen Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yanning Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Zhihua Zhou
- Department of Neurology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanjun Huang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohan Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yitong He
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jianwei Li
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Chen
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Pereyra AE, Mininni CJ, Zanutto BS. Serotonergic modulation of basolateral amygdala nucleus in the extinction of reward-driven learning: The role of 5-HT bioavailability and 5-HT 1A receptor. Behav Brain Res 2021; 404:113161. [PMID: 33571570 DOI: 10.1016/j.bbr.2021.113161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/15/2021] [Accepted: 01/31/2021] [Indexed: 12/29/2022]
Abstract
Serotonin (5-HT) neurotransmission has been associated with reward-related behaviour. Moreover, the serotonergic system modulates the basolateral amygdala (BLA), a structure involved in reward encoding, and reward prediction error. However, the role played by 5-HT on BLA during a reward-driven task has not been fully elucidated. In this paper, we investigated whether serotonergic modulation of the BLA is involved in reward-driven learning. To this end, we trained Long Evans rats in an operant conditioning task, and examined the effects of fluoxetine treatment (a selective serotonin reuptake inhibitor, 10 mg/kg) in combination with BLA lesions with NMDA (20 mg/mL) on extinction learning. We also investigated whether intra-BLA injection of the serotonergic 5-HT1A receptor agonist 8-OH DPAT, or antagonist WAY-100635, alters extinction performance. We found that fluoxetine treatment strongly accelerated extinction learning, while BLA lesions partially reverted this effect and slightly impaired consolidation of extinction. Stimulation and inhibition of 5-HT1A receptors in BLA induced opposite effects to those of fluoxetine, impairing or accelerating extinction performance, respectively. Our findings suggest that 5-HT modulates reward-driven learning, and 5-HT1A receptors located in the BLA are relevant for extinction.
Collapse
Affiliation(s)
- A Ezequiel Pereyra
- Instituto de Biologı́a y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, CABA, Argentina.
| | - Camilo J Mininni
- Instituto de Biologı́a y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, CABA, Argentina; Universidad de Buenos Aires, Facultad de Ingenierı́a, Instituto de Ingenierı́a Biomédica (IIBM), CABA, Argentina.
| | - B Silvano Zanutto
- Instituto de Biologı́a y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, CABA, Argentina; Universidad de Buenos Aires, Facultad de Ingenierı́a, Instituto de Ingenierı́a Biomédica (IIBM), CABA, Argentina.
| |
Collapse
|
9
|
Vilela-Costa HH, Maraschin JC, Casarotto PC, Sant'Ana AB, de Bortoli VC, Vicente MA, Campos AC, Guimarães FS, Zangrossi H. Role of 5-HT 1A and 5-HT 2C receptors of the dorsal periaqueductal gray in the anxiety- and panic-modulating effects of antidepressants in rats. Behav Brain Res 2021; 404:113159. [PMID: 33571572 DOI: 10.1016/j.bbr.2021.113159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023]
Abstract
Antidepressant drugs are first-line treatment for panic disorder. Facilitation of 5-HT1A receptor-mediated neurotransmission in the dorsal periaqueductal gray (dPAG), a key panic-associated area, has been implicated in the panicolytic effect of the selective serotonin reuptake inhibitor fluoxetine. However, it is still unknown whether this mechanism accounts for the antipanic effect of other classes of antidepressants drugs (ADs) and whether the 5-HT interaction with 5-HT2C receptors in this midbrain area (which increases anxiety) is implicated in the anxiogenic effect caused by short-term treatment with ADs. The results showed that previous injection of the 5-HT1A receptor antagonist WAY-100635 in the dPAG blocked the panicolytic-like effect caused by chronic systemic administration of the tricyclic AD imipramine in male Wistar rats tested in the elevated T-maze. Neither chronic treatment with imipramine nor fluoxetine changed the expression of 5-HT1A receptors in the dPAG. Treatment with these ADs also failed to significantly change ERK1/2 (extracellular-signal regulated kinase) phosphorylation level in this midbrain area. Blockade of 5-HT2C receptors in the dPAG with the 5-HT2C receptor antagonist SB-242084 did not change the anxiogenic effect caused by a single acute injection of fluoxetine or imipramine in the Vogel conflict test. These results reinforce the view that the facilitation of 5-HT1A receptor-mediated neurotransmission in the dPAG is a common mechanism involved in the panicolytic effect caused by chronic administration of ADs. On the other hand, the anxiogenic effect observed after short-term treatment with these drugs does not depend on 5-HT2C receptors located in the dPAG.
Collapse
MESH Headings
- Aminopyridines/pharmacology
- Animals
- Antidepressive Agents/pharmacology
- Anxiety/drug therapy
- Blotting, Western
- Elevated Plus Maze Test
- Fluoxetine/pharmacology
- Imipramine/pharmacology
- Indoles/pharmacology
- Male
- Open Field Test/drug effects
- Panic/drug effects
- Periaqueductal Gray/drug effects
- Periaqueductal Gray/metabolism
- Periaqueductal Gray/physiology
- Piperazines/pharmacology
- Pyridines/pharmacology
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/physiology
- Receptor, Serotonin, 5-HT2C/drug effects
- Receptor, Serotonin, 5-HT2C/metabolism
- Receptor, Serotonin, 5-HT2C/physiology
- Serotonin 5-HT1 Receptor Antagonists/pharmacology
Collapse
Affiliation(s)
- Heloisa H Vilela-Costa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Jhonatan Christian Maraschin
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | - Ana Beatriz Sant'Ana
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Valquiria C de Bortoli
- Department of Health Sciences, Federal University of Espírito Santo (UFES), São Mateus, ES, Brazil
| | - Maria Adrielle Vicente
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Alline Cristina Campos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Helio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
10
|
Schönfeld LM, Schäble S, Zech MP, Kalenscher T. 5-HT 1A receptor agonism in the basolateral amygdala increases mutual-reward choices in rats. Sci Rep 2020; 10:16622. [PMID: 33024202 PMCID: PMC7538979 DOI: 10.1038/s41598-020-73829-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
Rats show mutual-reward preferences, i.e., they prefer options that result in a reward for both themselves and a conspecific partner to options that result in a reward for themselves, but not for the partner. In a previous study, we have shown that lesions of the basolateral amygdala (BLA) reduced choices for mutual rewards. Here, we aimed to explore the role of 5-HT1A receptors within the BLA in mutual-reward choices. Rats received daily injections of either 50 or 25 ng of the 5-HT1A receptor agonist 8-OH-DPAT or a vehicle solution into the BLA and mutual-reward choices were measured in a rodent prosocial choice task. Compared to vehicle injections, 8-OH-DPAT significantly increased mutual-reward choices when a conspecific was present. By contrast, mutual-reward choices were significantly reduced by 8-OH-DPAT injections in the presence of a toy rat. The effect of 8-OH-DPAT injections was statistically significant during the expression, but not during learning of mutual-reward behavior, although an influence of 8-OH-DPAT injections on learning could not be excluded. There were no differences between 8-OH-DPAT-treated and vehicle-treated rats in general reward learning, behavioral flexibility, locomotion or anxiety. In this study, we have shown that repeated injections of the 5-HT1A receptor agonist 8-OH-DPAT have the potential to increase mutual-reward choices in a social setting without affecting other behavioral parameters.
Collapse
Affiliation(s)
- Lisa-Maria Schönfeld
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| | - Sandra Schäble
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Maurice-Philipp Zech
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Tobias Kalenscher
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
11
|
Baptista-de-Souza D, Tavares LRR, Furuya-da-Cunha EM, Carneiro de Oliveira PE, Canto-de-Souza L, Nunes-de-Souza RL, Canto-de-Souza A. Chronic Fluoxetine Impairs the Effects of 5-HT 1A and 5-HT 2C Receptors Activation in the PAG and Amygdala on Antinociception Induced by Aversive Situation in Mice. Front Pharmacol 2020; 11:260. [PMID: 32218734 PMCID: PMC7078365 DOI: 10.3389/fphar.2020.00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/24/2020] [Indexed: 11/24/2022] Open
Abstract
Growing evidence suggests an important role of fluoxetine with serotonin 5-HT1A and 5-HT2C receptors in the modulation of emotion and nociception in brain areas such as the amygdala and periaqueductal gray (PAG). Acute fluoxetine impairs 5-HT2C (but not 5-HT1A) receptor activation in the amygdaloid complex. Given that fluoxetine produces its clinical therapeutic effects only when given chronically, this study investigated the effects of chronic treatment with fluoxetine on the effects produced by 5-HT1A or 5-HT2C receptors activation in the amygdala or PAG on fear-induced antinociception. We recorded the effects of chronic fluoxetine on serotonin and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) levels as well as serotonin turnover; 5-HT1A and 5-HT2C receptor protein levels in the amygdala and PAG. Also, we evaluated the effects of chronic fluoxetine combined with intra-amygdala or intra-PAG injection of MK-212 (a 5-HT2C agonist; 0.63 nmol) or 8-OH-DPAT (a 5-HT1A agonist; 10 nmol) on the antinociceptive response in mice confined in the open arm of the elevated plus-maze (EPM). Nociception was assessed with the writhing test induced by intraperitoneal injection of 0.6% acetic acid. Results showed that fluoxetine (20 mg/kg, s.c.) enhanced the open-arm induced antinociception (OAA) and reduced the number of writhes in mice confined in the enclosed arm, featuring an analgesic effect. In addition, fluoxetine increased the expression of 5-HT2C receptors and 5-HT levels whereas reduced its turnover in the amygdala. While fluoxetine did not change 5-HT and 5-HIAA levels, and its turnover in the PAG, it up-regulated 5HT1A and 5-HT2C receptors in this midbrain area. Chronic fluoxetine (5.0 mg/Kg, an intrinsically inactive dose on nociception) antagonized the enhancement of OAA produced by intra-amygdala or intra-PAG injection of MK-212. Fluoxetine also impaired the attenuation of OAA induced by intra-amygdala injection of 8-OH-DPAT and totally prevented OAA in mice that received intra-PAG 8-OH-DPAT. These results suggest that (i) 5-HT may facilitate nociception and intensify OAA, acting at amygdala 5-HT1A and 5-HT2C receptors, respectively, and (ii) fluoxetine modulates the OAA through activation of 5-HT2C receptors within the PAG. These findings indicate that chronic fluoxetine impairs the effects of 5-HT1A and 5-HT2C receptors activation in the amygdala and PAG on fear-induced antinociception in mice.
Collapse
Affiliation(s)
- Daniela Baptista-de-Souza
- Department of Psychology, Federal University of São Carlos-UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil.,Institute of Neuroscience and Behavior, Ribeirão Preto, Brazil
| | - Lígia Renata Rodrigues Tavares
- Department of Psychology, Federal University of São Carlos-UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil
| | - Elke Mayumi Furuya-da-Cunha
- Department of Psychology, Federal University of São Carlos-UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil
| | - Paulo Eduardo Carneiro de Oliveira
- Department of Psychology, Federal University of São Carlos-UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil
| | - Lucas Canto-de-Souza
- Institute of Neuroscience and Behavior, Ribeirão Preto, Brazil.,Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, Araraquara, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil.,Institute of Neuroscience and Behavior, Ribeirão Preto, Brazil.,Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, Araraquara, Brazil
| | - Azair Canto-de-Souza
- Department of Psychology, Federal University of São Carlos-UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil.,Institute of Neuroscience and Behavior, Ribeirão Preto, Brazil.,Graduate Program in Psychology UFSCar, São Carlos, Brazil
| |
Collapse
|
12
|
Koizumi R, Kiyokawa Y, Tanaka KD, Tanikawa T, Takeuchi Y. Novel objects elicit greater activation in the basolateral complex of the amygdala of wild rats compared with laboratory rats. J Vet Med Sci 2019; 81:1121-1128. [PMID: 31270283 PMCID: PMC6715923 DOI: 10.1292/jvms.19-0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Wild animals tend to avoid novel objects that do not elicit clear avoidance behaviors in
domesticated animals. We previously found that the basolateral complex of the amygdala
(BLA) and dorsal bed nucleus of the stria terminalis (dBNST) were larger in trapped wild
rats compared with laboratory rats. Based on these findings, we hypothesized that the BLA
and/or dBNST would be differentially activated when wild and laboratory rats showed
different avoidance behaviors towards novel objects. In this study, we placed novel
objects at one end of the home cage. We measured the time spent in that half of the cage
and expressed the data as a percentage of the time spent in that region with no object
placement. We found that this percentage was lower in the wild rats compared with the
laboratory rats. These behavioral differences were accompanied by increased Fos expression
in the BLA, but not in the dBNST, of the wild rats. These results suggest that wild rats
show greater BLA activation compared with laboratory rats in response to novel objects. We
also found increased Fos expression in the paraventricular nucleus of the hypothalamus,
ventral BNST, and ventromedial hypothalamus, but not in the central amygdala of wild rats.
Taken together, our data represent new information regarding differences in behavioral and
neural responses towards novel objects in wild vs. laboratory rats.
Collapse
Affiliation(s)
- Ryoko Koizumi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki D Tanaka
- Technical Research Laboratory, Ikari Shodoku Corporation, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Tsutomu Tanikawa
- Technical Research Laboratory, Ikari Shodoku Corporation, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Sant’Ana AB, Vilela-Costa HH, Vicente MA, Hernandes PM, de Andrade TGCS, Zangrossi H. Role of 5-HT2C receptors of the dorsal hippocampus in the modulation of anxiety- and panic-related defensive responses in rats. Neuropharmacology 2019; 148:311-319. [DOI: 10.1016/j.neuropharm.2019.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 11/26/2022]
|
14
|
Frias AT, Fernandes GG, Zangrossi H. GABA A/benzodiazepine receptors in the dorsal periaqueductal gray mediate the panicolytic but not the anxiolytic effect of alprazolam in rats. Behav Brain Res 2019; 364:99-105. [PMID: 30768992 DOI: 10.1016/j.bbr.2019.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 01/04/2023]
Abstract
Although the etiology of panic disorder (PD) remains elusive, accumulating evidence suggests a key role for the dorsal periaqueductal gray matter (dPAG). There is also evidence that this midbrain area is critically involved in mediation of the panicolytic effect of antidepressants, which with high potency benzodiazepines (e.g. alprazolam and clonazepam) are first line treatment for PD. Whether the dPAG is also implicated in the antipanic effect of the latter drugs is, however, still unknown. We here investigated the consequences of blocking GABAA or benzodiazepine receptors within the dPAG, with bicuculline (5 pmol) and flumazenil (80 nmol), respectively, on the panicolytic and anxiolytic effects of alprazolam (4 mg/kg). Microinjection of these antagonists fully blocked the anti-escape effect, considered as a panicolytic-like action, caused by a single systemic injection of alprazolam in male Wistar rats submitted to the elevated T-maze. These antagonists, however, did not affect the anxiolytic effect of the benzodiazepine on inhibitory avoidance acquisition and punished responding, measured in the elevated T-maze and Vogel conflict tests, respectively. Altogether, our findings show the involvement of GABAA/benzodiazepine receptors of the dPAG in the panicolytic, but not the anxiolytic effect caused by alprazolam. They also implicate the dPAG as the fulcrum of the effects of different classes of clinically effective antipanic drugs.
Collapse
Affiliation(s)
- Alana Tercino Frias
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, Sao Paulo, Brazil
| | - Gabriel Gripp Fernandes
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, Sao Paulo, Brazil
| | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, Sao Paulo, Brazil.
| |
Collapse
|
15
|
Yamashita PS, Rosa DS, Lowry CA, Zangrossi H. Serotonin actions within the prelimbic cortex induce anxiolysis mediated by serotonin 1a receptors. J Psychopharmacol 2018; 33:269881118817384. [PMID: 30565963 DOI: 10.1177/0269881118817384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Serotonin plays an important role in the regulation of anxiety, acting through complex modulatory mechanisms within distinct brain structures. Serotonin can act through complex negative feedback mechanisms controlling the neuronal activity of serotonergic circuits and downstream physiologic and behavioral responses. Administration of serotonin or the serotonin 1A receptor agonist, (±)-8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT), into the prefrontal cortex, inhibits anxiety-like responses. The prelimbic area of the prefrontal cortex regulates serotonergic neurons within the dorsal raphe nucleus and is involved in modulating anxiety-like behavioral responses. AIMS: This study aimed to investigate the serotonergic role within the prelimbic area on anxiety- and panic-related defensive behavioral responses. METHODS: We investigated the effects of serotonin within the prelimbic area on inhibitory avoidance and escape behaviors in the elevated T-maze. We also extended the investigation to serotonin 1A, 2A, and 2C receptors. RESULTS: Intra-prelimbic area injection of serotonin or 8-OH-DPAT induced anxiolytic effects without affecting escape behaviors. Previous administration of the serotonin 1A receptor antagonist, WAY-100635, into the prelimbic area counteracted the anxiolytic effects of serotonin. Neither the serotonin 2A nor the serotonin 2C receptor preferential agonists, (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) and 6-chloro-2-(1-piperazinyl) pyrazine (MK-212), respectively, affected behavioral responses in the elevated T-maze. CONCLUSION: Facilitation of serotonergic signaling within the prelimbic area of rats induced an anxiolytic effect in the elevated T-maze test, which was mediated by local serotonin 1A receptors. This inhibition of anxiety-like defensive behavioral responses may be mediated by prelimbic area projections to neural systems controlling anxiety, such as the dorsal raphe nucleus or basolateral amygdala.
Collapse
Affiliation(s)
- Paula Sm Yamashita
- 1 Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- 2 Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Daiane S Rosa
- 3 Department of Neuroscience and Behavioral Science, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Christopher A Lowry
- 2 Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Helio Zangrossi
- 1 Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- 3 Department of Neuroscience and Behavioral Science, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
16
|
Abstract
Previous attempts to identify a unified theory of brain serotonin function have largely failed to achieve consensus. In this present synthesis, we integrate previous perspectives with new and older data to create a novel bipartite model centred on the view that serotonin neurotransmission enhances two distinct adaptive responses to adversity, mediated in large part by its two most prevalent and researched brain receptors: the 5-HT1A and 5-HT2A receptors. We propose that passive coping (i.e. tolerating a source of stress) is mediated by postsynaptic 5-HT1AR signalling and characterised by stress moderation. Conversely, we argue that active coping (i.e. actively addressing a source of stress) is mediated by 5-HT2AR signalling and characterised by enhanced plasticity (defined as capacity for change). We propose that 5-HT1AR-mediated stress moderation may be the brain's default response to adversity but that an improved ability to change one's situation and/or relationship to it via 5-HT2AR-mediated plasticity may also be important - and increasingly so as the level of adversity reaches a critical point. We propose that the 5-HT1AR pathway is enhanced by conventional 5-HT reuptake blocking antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), whereas the 5-HT2AR pathway is enhanced by 5-HT2AR-agonist psychedelics. This bipartite model purports to explain how different drugs (SSRIs and psychedelics) that modulate the serotonergic system in different ways, can achieve complementary adaptive and potentially therapeutic outcomes.
Collapse
Affiliation(s)
- RL Carhart-Harris
- Psychedelic Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - DJ Nutt
- Psychedelic Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
17
|
Soares VP, Campos AC. Evidences for the Anti-panic Actions of Cannabidiol. Curr Neuropharmacol 2017; 15:291-299. [PMID: 27157263 PMCID: PMC5412699 DOI: 10.2174/1570159x14666160509123955] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/26/2016] [Accepted: 04/27/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Panic disorder (PD) is a disabling psychiatry condition that affects approximately 5% of the worldwide population. Currently, long-term selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for PD; however, the common side-effect profiles and drug interactions may provoke patients to abandon the treatment, leading to PD symptoms relapse. Cannabidiol (CBD) is the major non-psychotomimetic constituent of the Cannabis sativa plant with anti-anxiety properties that has been suggested as an alternative for treating anxiety disorders. The aim of the present review was to discuss the effects and mechanisms involved in the putative anti-panic effects of CBD. METHODS electronic database was used as source of the studies selected selected based on the studies found by crossing the following keywords: cannabidiol and panic disorder; canabidiol and anxiety, cannabidiol and 5-HT1A receptor). RESULTS In the present review, we included both experimental laboratory animal and human studies that have investigated the putative anti-panic properties of CBD. Taken together, the studies assessed clearly suggest an anxiolytic-like effect of CBD in both animal models and healthy volunteers. CONCLUSION CBD seems to be a promising drug for the treatment of PD. However, novel clinical trials involving patients with the PD diagnosis are clearly needed to clarify the specific mechanism of action of CBD and the safe and ideal therapeutic doses of this compound.
Collapse
Affiliation(s)
| | - Alline C Campos
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, 3900 Bandeirantes avenue, Ribeirao Preto-SP, Brazil
| |
Collapse
|
18
|
Belmer A, Klenowski PM, Patkar OL, Bartlett SE. Mapping the connectivity of serotonin transporter immunoreactive axons to excitatory and inhibitory neurochemical synapses in the mouse limbic brain. Brain Struct Funct 2016; 222:1297-1314. [PMID: 27485750 PMCID: PMC5368196 DOI: 10.1007/s00429-016-1278-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/20/2016] [Indexed: 12/25/2022]
Abstract
Serotonin neurons arise from the brainstem raphe nuclei and send their projections throughout the brain to release 5-HT which acts as a modulator of several neuronal populations. Previous electron microscopy studies in rats have morphologically determined the distribution of 5-HT release sites (boutons) in certain brain regions and have shown that 5-HT containing boutons form synaptic contacts that are either symmetric or asymmetric. In addition, 5-HT boutons can form synaptic triads with the pre- and postsynaptic specializations of either symmetrical or asymmetrical synapses. However, due to the labor intensive processing of serial sections required by electron microscopy, little is known about the neurochemical properties or the quantitative distribution of 5-HT triads within whole brain or discrete subregions. Therefore, we used a semi-automated approach that combines immunohistochemistry and high-resolution confocal microscopy to label serotonin transporter (SERT) immunoreactive axons and reconstruct in 3D their distribution within limbic brain regions. We also used antibodies against key pre- (synaptophysin) and postsynaptic components of excitatory (PSD95) or inhibitory (gephyrin) synapses to (1) identify putative 5-HTergic boutons within SERT immunoreactive axons and, (2) quantify their close apposition to neurochemical excitatory or inhibitory synapses. We provide a 5-HTergic axon density map and have determined the ratio of synaptic triads consisting of a 5-HT bouton in close proximity to either neurochemical excitatory or inhibitory synapses within different limbic brain areas. The ability to model and map changes in 5-HTergic axonal density and the formation of triadic connectivity within whole brain regions using this rapid and quantitative approach offers new possibilities for studying neuroplastic changes in the 5-HTergic pathway.
Collapse
Affiliation(s)
- Arnauld Belmer
- Translational Research Institute, Queensland University of Technology, Brisbane, Qld 4059, Australia
| | - Paul M Klenowski
- Translational Research Institute, Queensland University of Technology, Brisbane, Qld 4059, Australia
| | - Omkar L Patkar
- Translational Research Institute, Queensland University of Technology, Brisbane, Qld 4059, Australia
| | - Selena E Bartlett
- Translational Research Institute, Queensland University of Technology, Brisbane, Qld 4059, Australia. .,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
19
|
Linley SB, Olucha-Bordonau F, Vertes RP. Pattern of distribution of serotonergic fibers to the amygdala and extended amygdala in the rat. J Comp Neurol 2016; 525:116-139. [PMID: 27213991 DOI: 10.1002/cne.24044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/03/2016] [Accepted: 05/20/2016] [Indexed: 02/01/2023]
Abstract
As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the forebrain, including the amygdala. Although a few reports have examined the 5-HT innervation of select nuclei of the amygdala in the rat, no previous report has described overall 5-HT projections to the amygdala in the rat. Using immunostaining for the serotonin transporter, SERT, we describe the complete pattern of distribution of 5-HT fibers to the amygdala (proper) and to the extended amygdala in the rat. Based on its ontogenetic origins, the amygdala was subdivided into two major parts, pallial and subpallial components, with the pallial component further divided into superficial and deep nuclei (Olucha-Bordonau et al. 2015). SERT+ fibers were shown to distributed moderately to densely to the deep and cortical pallial nuclei, but, by contrast, lightly to the subpallial nuclei. Specifically, 1) of the deep pallial nuclei, the lateral, basolateral, and basomedial nuclei contained a very dense concentration of 5-HT fibers; 2) of the cortical pallial nuclei, the anterior cortical and amygdala-cortical transition zone rostrally and the posteromedial and posterolateral nuclei caudally contained a moderate concentration of 5-HT fibers; and 3) of the subpallial nuclei, the anterior nuclei and the rostral part of the medial (Me) nuclei contained a moderate concentration of 5-HT fibers, whereas caudal regions of Me as well as the central nuclei and the intercalated nuclei contained a sparse/light concentration of 5-HT fibers. With regard to the extended amygdala (primarily the bed nucleus of stria terminalis; BST), on the whole, the BST contained moderate numbers of 5-HT fibers, spread fairly uniformly throughout BST. The findings are discussed with respect to a critical serotonergic influence on the amygdala, particularly on the basal complex, and on the extended amygdala in the control of states of fear and anxiety. J. Comp. Neurol. 525:116-139, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stephanie B Linley
- Department of Psychology, Florida Atlantic University, Boca Raton, Florida, 33431.,Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, 33431
| | - Francisco Olucha-Bordonau
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, 12071, Castellón, Spain
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, 33431
| |
Collapse
|
20
|
de Paula BB, Leite-Panissi CRA. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior. Brain Res 2016; 1643:152-8. [PMID: 27150816 DOI: 10.1016/j.brainres.2016.04.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/26/2016] [Accepted: 04/30/2016] [Indexed: 02/03/2023]
Abstract
The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation.
Collapse
Affiliation(s)
- Bruna Balbino de Paula
- Psychobiology Graduate Program, University of São Paulo - Ribeirão Preto Dentistry School - Dept. Morphology, Physiology and Basic Pathology 14040-901, SP, Brazil
| | - Christie Ramos Andrade Leite-Panissi
- Psychobiology Graduate Program, University of São Paulo - Ribeirão Preto Dentistry School - Dept. Morphology, Physiology and Basic Pathology 14040-901, SP, Brazil; Departament of Morphology, Physiology and Basic Pathology of Dentistry School of Ribeirão Preto, University of São Paulo, 14040-904 SP, Brazil.
| |
Collapse
|
21
|
Brockway ET, Krater KR, Selva JA, Wauson SER, Currie PJ. Impact of [d-Lys(3)]-GHRP-6 and feeding status on hypothalamic ghrelin-induced stress activation. Peptides 2016; 79:95-102. [PMID: 27020248 DOI: 10.1016/j.peptides.2016.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/20/2016] [Accepted: 03/23/2016] [Indexed: 12/18/2022]
Abstract
Ghrelin administration directly into hypothalamic nuclei, including the arcuate nucleus (ArcN) and the paraventricular nucleus (PVN), alters the expression of stress-related behaviors. In the present study we investigated the effect of feeding status on the ability of ghrelin to induce stress and anxiogenesis. Adult male Sprague Dawley rats were implanted with guide cannula targeting either the ArcN or PVN. In the first experiment we confirmed that ArcN and PVN ghrelin treatment produced anxiety-like behavior as measured using the elevated plus maze (EPM) paradigm. Ghrelin was administered during the early dark cycle. Immediately after microinjections rats were placed in the EPM for 5min. Both ArcN and PVN treatment reduced open arm exploration. The effect was attenuated by pretreatment with the ghrelin 1a receptor antagonist [d-Lys(3)]-GHRP-6. In a separate group of animals ghrelin was injected into either nucleus and rats were returned to their home cages for 60min with free access to food. An additional group of rats was returned to home cages with no food access. After 60min with or without food access all rats were tested in the EPM. Results indicated that food consumption just prior to EPM testing reversed the avoidance of the open arms of the EPM. In contrast, rats injected with ghrelin, placed in their home cage for 60min without food, and subsequently tested in the EPM, exhibited an increased avoidance of the open arms, consistent with stress activation. Overall, our findings demonstrate that ghrelin 1a receptor blockade and feeding status appear to impact the ability of ArcN and PVN ghrelin to elicit stress and anxiety-like behaviors.
Collapse
Affiliation(s)
- Emma T Brockway
- Department of Psychology, Reed College, Portland, OR 97202, United States
| | - Katherine R Krater
- Department of Psychology, Reed College, Portland, OR 97202, United States
| | - Joaquín A Selva
- Department of Psychology, Reed College, Portland, OR 97202, United States
| | - Shelby E R Wauson
- Department of Psychology, Reed College, Portland, OR 97202, United States
| | - Paul J Currie
- Department of Psychology, Reed College, Portland, OR 97202, United States.
| |
Collapse
|
22
|
Guo X, Li Z, Zhang C, Yi Z, Li H, Cao L, Yuan C, Hong W, Wu Z, Peng D, Chen J, Xia W, Zhao G, Wang F, Yu S, Cui D, Xu Y, Golam CMI, Smith AK, Wang T, Fang Y. Down-regulation of PRKCB1 expression in Han Chinese patients with subsyndromal symptomatic depression. J Psychiatr Res 2015; 69:1-6. [PMID: 26343587 DOI: 10.1016/j.jpsychires.2015.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/02/2015] [Accepted: 07/09/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Subsyndromal symptomatic depression (SSD) is a common disease with significant social dysfunction. However, SSD is still not well understood and the pathophysiology of it remains unclear. METHODS We classified 48 candidate genes for SSD according to our previous study into clusters and pathways using DAVID Bioinformatics Functional Annotation Tool. We further replicated the result by using real-time Quantitative PCR (qPCR) studies to examine the expression of identified genes (i.e., STAT5b, PKCB1, ABL1 and NRAS) in another group of Han Chinese patients with SSD (n = 50). We further validated the result by examining PRKCB1 expression collected from MDD patients (n = 20). To test whether a deficit in PRKCB1 expression leads to dysregulation in PRKCB1 dependent transcript networks, we tested mRNA expression levels for the remaining 44 genes out of 48 genes in SSD patients. Finally, the power of discovery was improved by incorporating information from Quantitative Trait (eQTL) analysis. RESULTS The results showed that the PRCKB1 gene expression in peripheral blood mononuclear cells (PBMC) was 33.3% down-regulated in SSD patients (n = 48, t = 3.202, p = 0.002), and a more dramatic (n = 17, 49%) down-regulation in MDD patients than control (n = 49, t = 2.114, p = 0.001). We also identified 37 genes that displayed a strong correlation with PRKCB1 mRNA expression levels in SSD patients. The expression of PRKCB1 was regulated by multiple single nucleotide polymorphisms (SNPs) both at the transcript level and exon level. CONCLUSIONS In conclusion, we first found a significant decrease of PRCKB1 mRNA expression in SSD, suggesting PRKCB1 might be the candidate gene and biomarker for SSD.
Collapse
Affiliation(s)
- Xiaoyun Guo
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06511, United States; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Zezhi Li
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghui Yi
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haozhe Li
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Cao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengmei Yuan
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wu Hong
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguo Wu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Chen
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiping Xia
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqing Zhao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifeng Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chowdhury M I Golam
- Magnetic Resonance Research Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Alicia K Smith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 101 Woodruff Circle, Suite 4000, Atlanta, GA 30322, United States
| | - Tong Wang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06511, United States
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats. Neuroscience 2015; 300:609-18. [DOI: 10.1016/j.neuroscience.2015.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 01/20/2023]
|
24
|
Wauson SER, Sarkodie K, Schuette LM, Currie PJ. Midbrain raphe 5-HT1A receptor activation alters the effects of ghrelin on appetite and performance in the elevated plus maze. J Psychopharmacol 2015; 29:836-44. [PMID: 25922422 DOI: 10.1177/0269881115581981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prior research suggests that midbrain serotonergic signaling and hypothalamic ghrelinergic signaling both play critical roles in appetitive and emotional behaviors. In the present study, we investigated the effects of median raphe nucleus (MRN) somatodentritic 5-HT1A receptor activation on the feeding-stimulant and anxiogenic action of paraventricular nucleus (PVN) ghrelin. In an initial experiment, adult male Sprague-Dawley rats were injected with either ghrelin (200-800 pmol) into the PVN or 8-OH-DPAT (2.5-10 nmol), a 5-HT1A receptor agonist, into the MRN. Performance on the elevated plus maze (EPM) was then assessed. In separate rats, MRN 8-OH-DPAT (2.5-5 nmol) was administered 5 min prior to PVN injection of ghrelin (400 pmol) followed by EPM testing. The orexigenic effects of MRN 8-OH-DPAT (0.1-1.6 nmol) paired with PVN ghrelin (50 pmol) were also examined. When administered alone into the PVN, ghrelin significantly decreased the number of entries and time spent in the open arms of the EPM. This anxiogenic effect was blocked if rats were allowed to eat immediately after ghrelin administration and then tested in the plus maze. MRN injections of 8-OH-DPAT were anxiolytic, and when rats were pretreated with 8-OH-DPAT prior to ghrelin, the anxiogenic action of the peptide was attenuated. In contrast, MRN administration of 8-OH-DPAT potentiated the eating-stimulant effect of PVN ghrelin. Overall, our findings demonstrate that ghrelinergic and serotonergic circuits interact in the neural control of eating and anxiety-like behaviors, with 5-HT1A receptor mechanisms potentiating the orexigenic action of ghrelin while inhibiting ghrelin-induced anxiogenesis as measured via the EPM.
Collapse
Affiliation(s)
| | - Kwaku Sarkodie
- Department of Psychology, Reed College, Portland, OR, USA
| | | | - Paul J Currie
- Department of Psychology, Reed College, Portland, OR, USA
| |
Collapse
|
25
|
Hui YP, Wang T, Han LN, Li LB, Sun YN, Liu J, Qiao HF, Zhang QJ. Anxiolytic effects of prelimbic 5-HT1A receptor activation in the hemiparkinsonian rat. Behav Brain Res 2015; 277:211-20. [DOI: 10.1016/j.bbr.2014.04.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|
26
|
Activation of 5-HT2a receptors in the basolateral amygdala promotes defeat-induced anxiety and the acquisition of conditioned defeat in Syrian hamsters. Neuropharmacology 2014; 90:102-12. [PMID: 25458113 DOI: 10.1016/j.neuropharm.2014.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/11/2014] [Accepted: 11/22/2014] [Indexed: 01/14/2023]
Abstract
Conditioned defeat is a model in Syrian hamsters (Mesocricetus auratus) in which normal territorial aggression is replaced by increased submissive and defensive behavior following acute social defeat. The conditioned defeat response involves both a fear-related memory for a specific opponent as well as anxiety-like behavior indicated by avoidance of novel conspecifics. We have previously shown that systemic injection of a 5-HT2a receptor antagonist reduces the acquisition of conditioned defeat. Because neural activity in the basolateral amygdala (BLA) is critical for the acquisition of conditioned defeat and BLA 5-HT2a receptors can modulate anxiety but have a limited effect on emotional memories, we investigated whether 5-HT2a receptor modulation alters defeat-induced anxiety but not defeat-related memories. We injected the 5-HT2a receptor antagonist MDL 11,939 (0 mM, 1.7 mM or 17 mM) or the 5-HT2a receptor agonist TCB-2 (0 mM, 8 mM or 80 mM) into the BLA prior to social defeat. We found that injection of MDL 11,939 into the BLA impaired acquisition of the conditioned defeat response and blocked defeat-induced anxiety in the open field, but did not significantly impair avoidance of former opponents in the Y-maze. Furthermore, we found that injection of TCB-2 into the BLA increased the acquisition of conditioned defeat and increased anxiety-like behavior in the open field, but did not alter avoidance of former opponents. Our data suggest that 5-HT2a receptor signaling in the BLA is both necessary and sufficient for the development of conditioned defeat, likely via modulation of defeat-induced anxiety.
Collapse
|
27
|
Serotonin in anxiety and panic: Contributions of the elevated T-maze. Neurosci Biobehav Rev 2014; 46 Pt 3:397-406. [DOI: 10.1016/j.neubiorev.2014.03.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/05/2014] [Accepted: 03/03/2014] [Indexed: 11/21/2022]
|
28
|
Vicente MA, Zangrossi H. Involvement of 5-HT2C and 5-HT1A receptors of the basolateral nucleus of the amygdala in the anxiolytic effect of chronic antidepressant treatment. Neuropharmacology 2013; 79:127-35. [PMID: 24275045 DOI: 10.1016/j.neuropharm.2013.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/30/2022]
Abstract
Facilitation of serotonin 2C- and 1A-receptor (5-HT2C-R and 5-HT1A-R) mediated neurotransmission in the basolateral nucleus of the amygdala (BLA) has been associated with anxiogenic and anxiolytic effects, respectively. It has been also shown that stimulation of BLA 5-HT2C-Rs underlies the anxiogenic effect caused by acute systemic administration of the antidepressants imipramine or fluoxetine. Here we investigated whether chronic treatment with these two antidepressants, which causes anxiolytic effects, decreases the responsiveness of these receptors in the BLA. We also investigated whether the blockage of 5-HT1A-Rs in the same amygdala nucleus alters the anxiolytic effect of chronic imipramine treatment. The results showed that in male Wistar rats intra-BLA injection of the 5-HT2C-R agonist MK-212 facilitated inhibitory avoidance acquisition in the elevated T-maze and decreased the percentage of time spent by the animals in the lit compartment of the light-dark transition test, indicating an anxiogenic effect. Chronic (21 days) systemic treatment with imipramine (5 or 15 mg/kg) or fluoxetine (10 mg/kg) abolished these effects of MK-212. Acute administration of imipramine (5 mg/kg) failed to interfere with MK-212 effects in both tests. Intra-BLA injection of the 5-HT1A antagonist WAY-100635 blocked the anxiolytic, but not the panicolytic, effect of imipramine in the tests used. Our findings indicate that both a reduction in 5-HT2C-R- and a facilitation of 5-HT1A-R-mediated neurotransmission in the BLA are involved in the anxiolytic effect of antidepressant drugs.
Collapse
Affiliation(s)
- Maria Adrielle Vicente
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Helio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|