1
|
Debenham MIB, Bruce CB, McNeil CJ, Dalton BH. The effects of four hours of normobaric hypoxia on the vestibular control of balance. Exp Brain Res 2024; 242:2419-2432. [PMID: 39147911 DOI: 10.1007/s00221-024-06905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
Whole-body vestibular-evoked balance responses decrease following ~ 55 min of normobaric hypoxia. It is unclear how longer durations of hypoxia affect the vestibular control of balance at the muscle and whole-body levels. This study examined how four hours of normobaric hypoxia influenced the vestibular control of balance. Fifteen participants (4 females; 11 males) stood on a force plate with vision occluded and head rotated rightward while subjected to three blocks of binaural, bipolar stochastic electrical vestibular stimulation (EVS; 0-25 Hz, root mean square amplitude = 1.1 mA) consisting of two, 90-s trials. The relationship between EVS and anteroposterior (AP) forces or medial gastrocnemius (MG) electromyography (EMG) was estimated in the time and frequency domains at baseline (BL; 0.21 fraction of inspired oxygen-FIO2) and following two (H2) and four (H4) hours of normobaric hypoxia (0.11 FIO2). The EVS-MG EMG short-latency peak and peak-to-peak amplitudes were smaller than BL at H2 and H4, but the medium-latency peak amplitude was only lower at H4. The EVS-AP force medium-latency peak amplitude was lower than BL at H4, but the short-latency peak and peak-to-amplitudes were unchanged. The EVS-MG EMG coherence and gain were reduced compared to BL at H2 and H4 across multiple frequencies ≥ 7 Hz, whereas EVS-AP force coherence was blunted at H4 (≤ 4 Hz), but gain was unaffected. Overall, the central nervous system's response to vestibular-driven signals during quiet standing was decreased for up to four hours of normobaric hypoxia, and vestibular-evoked responses recorded within postural muscles may be more sensitive than the whole-body response.
Collapse
Affiliation(s)
- M I B Debenham
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia, Okanagan Campus, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - C B Bruce
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia, Okanagan Campus, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - C J McNeil
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia, Okanagan Campus, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - B H Dalton
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia, Okanagan Campus, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
2
|
Maxwell DL, Orian JM. Cerebellar pathology in multiple sclerosis and experimental autoimmune encephalomyelitis: current status and future directions. J Cent Nerv Syst Dis 2023; 15:11795735231211508. [PMID: 37942276 PMCID: PMC10629308 DOI: 10.1177/11795735231211508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023] Open
Abstract
Recent decades have witnessed significant progress in understanding mechanisms driving neurodegeneration and disease progression in multiple sclerosis (MS), but with a focus on the cerebrum. In contrast, there have been limited studies of cerebellar disease, despite the common occurrence of cerebellar symptoms in this disorder. These rare studies, however, highlight the early cerebellar involvement in disease development and an association between the early occurrence of cerebellar lesions and risk of worse prognosis. In parallel developments, it has become evident that far from being a region specialized in movement control, the cerebellum plays a crucial role in cognitive function, via circuitry connecting the cerebellum to association areas of the cerebrum. This complexity, coupled with challenges in imaging of the cerebellum have been major obstacles in the appreciation of the spatio-temporal evolution of cerebellar damage in MS and correlation with disability and progression. MS studies based on animal models have relied on an induced neuroinflammatory disease known as experimental autoimmune encephalomyelitis (EAE), in rodents and non-human primates (NHP). EAE has played a critical role in elucidating mechanisms underpinning tissue damage and been validated for the generation of proof-of-concept for cerebellar pathological processes relevant to MS. Additionally, rodent and NHP studies have formed the cornerstone of current knowledge of functional anatomy and cognitive processes. Here, we propose that improved insight into consequences of cerebellar damage in MS at the functional, cellular and molecular levels would be gained by more extensive characterization of EAE cerebellar pathology combined with the power of experimental paradigms in the field of cognition. Such combinatorial approaches would lead to improved potential for the development of MS sensitive markers and evaluation of candidate therapeutics.
Collapse
Affiliation(s)
- Dain L. Maxwell
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Jacqueline M. Orian
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
3
|
Debenham MIB, Grantham TDA, Smirl JD, Foster GE, Dalton BH. The effects of acute normobaric hypoxia on vestibular-evoked balance responses in humans. J Vestib Res 2023; 33:31-49. [PMID: 36530112 DOI: 10.3233/ves-220075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hypoxia influences standing balance and vestibular function. OBJECTIVE The purpose here was to investigate the effect of hypoxia on the vestibular control of balance. METHODS Twenty participants (10 males; 10 females) were tested over two days (normobaric hypoxia and normoxia). Participants stood on a force plate (head rotated leftward) and experienced random, continuous electrical vestibular stimulation (EVS) during trials of eyes open (EO) and closed (EC) at baseline (BL), after 5 (H1), 30 (H2) and 55-min (H3) of hypoxia, and 10-min into normoxic recovery (NR). Vestibular-evoked balance responses were quantified using cumulant density, coherence, and gain functions between EVS and anteroposterior forces. RESULTS Oxyhemoglobin saturation, end-tidal oxygen and carbon dioxide decreased for H1-3 compared to BL; however, end-tidal carbon dioxide remained reduced at NR with EC (p≤0.003). EVS-AP force peak-to-peak amplitude was lower at H3 and NR than at BL (p≤0.01). At multiple frequencies, EVS-AP force coherence and gain estimates were lower at H3 and NR than BL for females; however, this was only observed for coherence for males. CONCLUSIONS Overall, vestibular-evoked balance responses are blunted following normobaric hypoxia >30 min, which persists into NR and may contribute to the reported increases in postural sway.
Collapse
Affiliation(s)
- M I B Debenham
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - T D A Grantham
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - J D Smirl
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - G E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - B H Dalton
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
4
|
Debenham MIB, Smuin JN, Grantham TDA, Ainslie PN, Dalton BH. Hypoxia and standing balance. Eur J Appl Physiol 2021; 121:993-1008. [PMID: 33484334 DOI: 10.1007/s00421-020-04581-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE Standing balance control is important for everyday function and often goes unnoticed until impairments appear. Presently, more than 200 million people live at altitudes > 2500 m above sea level, and many others work at or travel to these elevations. Thus, it is important to understand how hypoxia alters balance owing to implications for occupations and travelers. Herein, the influence of normobaric and hypobaric hypoxia on standing balance control is reviewed and summarized. As postural control relies on the integration of sensorimotor signals, the potential hypoxic-sensitive neurophysiological factors that contribute to balance impairments are also reviewed. Specifically, we examine how hypoxia impairs visual, vestibular, and proprioceptive cues, and their integration within subcortical or cortical areas. METHODS This systematic review included a literature search conducted via multiple databases with keywords related to postural balance, hypoxia, and altitude. Articles (n = 13) were included if they met distinct criteria. RESULTS Compared to normoxia, normobaric hypoxia worsened parameters of standing balance by 2-10% and up to 83 and 240% in hypobaric hypoxia (high-altitude and lab-based, respectively). Although balance was only disrupted during normobaric hypoxia at FIO2 < ~ 0.15, impairments consistently occurred during hypobaric hypoxia at altitudes > 1524 m (~ FIO2 < 0.18). CONCLUSION Hypoxia, especially hypobaric, impairs standing balance. The mechanisms underpinning postural decrements likely involve alterations to processing and integration of sensorimotor signals within subcortical or cortical structures involving visual, vestibular, and proprioceptive pathways and subsequent motor commands that direct postural adjustments. Future studies are required to determine the sensorimotor factors that may influence balance control in hypoxia.
Collapse
Affiliation(s)
- Mathew I B Debenham
- School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, Canada
| | - Janelle N Smuin
- School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, Canada
| | - Tess D A Grantham
- School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, Canada
| | - Brian H Dalton
- School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, Canada.
| |
Collapse
|
5
|
Minnis H, Posserud MB, Thompson L, Gillberg C. Hypothesis: The highly folded brain surface might be structured and located so as to facilitate inter-brain synchronization. RESEARCH IDEAS AND OUTCOMES 2020. [DOI: 10.3897/rio.6.e48887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We integrate recent findings from neuro-anatomy, electroencephalography, quantum biology and social/neurodevelopment to propose that the brain surface might be specialised for communication with other brains.
Ground breaking, but still small-scale, research has demonstrated that human brains can act in synchrony and detect the brain activity of other human brains. Group aggregation, in all species, maximises community support and safety but does not depend on verbal or visual interaction. The morphology of the brain’s outermost layers, across a wide range of species, exhibits a highly folded fractal structure that is likely to maximise exchange at the surface: in humans, a reduced brain surface area is associated with disorders of social communication. The brain sits in a vulnerable exposed location where it is prone to damage, rather than being housed in a central location such as within the ribcage.
These observations have led us to the hypothesis that the brain surface might be specialised for interacting with other brains at its surface, allowing synchronous non-verbal interaction. To our knowledge, this has not previously been proposed or investigated.
Collapse
|
6
|
Xu T, Xiao N, Zhai X, Kwan Chan P, Tin C. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning. J Neural Eng 2019; 15:016021. [PMID: 29115280 DOI: 10.1088/1741-2552/aa98e9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). APPROACH The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. MAIN RESULTS This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. SIGNIFICANCE This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.
Collapse
Affiliation(s)
- Tao Xu
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | | | | | | | | |
Collapse
|
7
|
Chan HH, Cooperrider JL, Park HJ, Wathen CA, Gale JT, Baker KB, Machado AG. Crossed Cerebellar Atrophy of the Lateral Cerebellar Nucleus in an Endothelin-1-Induced, Rodent Model of Ischemic Stroke. Front Aging Neurosci 2017; 9:10. [PMID: 28261086 PMCID: PMC5313508 DOI: 10.3389/fnagi.2017.00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/13/2017] [Indexed: 11/29/2022] Open
Abstract
Crossed cerebellar diaschisis (CCD) is a functional deficit of the cerebellar hemisphere resulting from loss of afferent input consequent to a lesion of the contralateral cerebral hemisphere. It is manifested as a reduction of metabolism and blood flow and, depending on severity and duration, it can result in atrophy, a phenomenon known as crossed cerebellar atrophy (CCA). While CCA has been well-demonstrated in humans, it remains poorly characterized in animal models of stroke. In this study we evaluated the effects of cerebral cortical ischemia on contralateral cerebellar anatomy using an established rodent model of chronic stroke. The effects of cortical ischemia on the cerebellar hemispheres, vermis and deep nuclei were characterized. Intracortical microinjections of endothelin-1 (ET-1) were delivered to the motor cortex of Long Evans rats to induce ischemic stroke, with animals sacrificed 6 weeks later. Naive animals served as controls. Cerebral sections and cerebellar sections including the deep nuclei were prepared for analysis with Nissl staining. Cortical ischemia was associated with significant thickness reduction of the molecular layer at the Crus 1 and parafloccular lobule (PFL), but not in fourth cerebellar lobule (4Cb), as compared to the ipsilesional cerebellar hemisphere. A significant reduction in volume and cell density of the lateral cerebellar nucleus (LCN), the rodent correlate of the dentate nucleus, was also noted. The results highlight the relevance of corticopontocerebellar (CPC) projections for cerebellar metabolism and function, including its direct projections to the LCN.
Collapse
Affiliation(s)
- Hugh H Chan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Cleveland, OH, USA
| | - Jessica L Cooperrider
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicCleveland, OH, USA; Center for Neurological Restoration, Cleveland ClinicCleveland, OH, USA
| | - Hyun-Joo Park
- Center for Neurological Restoration, Cleveland Clinic Cleveland, OH, USA
| | - Connor A Wathen
- Center for Neurological Restoration, Cleveland Clinic Cleveland, OH, USA
| | - John T Gale
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicCleveland, OH, USA; Center for Neurological Restoration, Cleveland ClinicCleveland, OH, USA
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicCleveland, OH, USA; Center for Neurological Restoration, Cleveland ClinicCleveland, OH, USA
| | - Andre G Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicCleveland, OH, USA; Center for Neurological Restoration, Cleveland ClinicCleveland, OH, USA
| |
Collapse
|
8
|
Watson TC. "And the little brain said to the big brain…" Editorial: Distributed networks: new outlooks on cerebellar function. Front Syst Neurosci 2015; 9:78. [PMID: 26029063 PMCID: PMC4432673 DOI: 10.3389/fnsys.2015.00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/01/2015] [Indexed: 11/17/2022] Open
Affiliation(s)
- Thomas C Watson
- School of Physiology and Pharmacology, University of Bristol Bristol, UK ; Sorbonne Universites, UPMC Univ Paris 06, Neuroscience Paris Seine, UMR CNRS 8246, INSERM 1130, Institut de Biologie Paris Seine, Cerebellum Navigation and Memory Team Paris, France
| |
Collapse
|
9
|
Structure-function relationships between aldolase C/zebrin II expression and complex spike synchrony in the cerebellum. J Neurosci 2015; 35:843-52. [PMID: 25589776 DOI: 10.1523/jneurosci.2170-14.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Simple and regular anatomical structure is a hallmark of the cerebellar cortex. Parasagittally arrayed alternate expression of aldolase C/zebrin II in Purkinje cells (PCs) has been extensively studied, but surprisingly little is known about its functional significance. Here we found a precise structure-function relationship between aldolase C expression and synchrony of PC complex spike activities that reflect climbing fiber inputs to PCs. We performed two-photon calcium imaging in transgenic mice in which aldolase C compartments can be visualized in vivo, and identified highly synchronous complex spike activities among aldolase C-positive or aldolase C-negative PCs, but not across these populations. The boundary of aldolase C compartments corresponded to that of complex spike synchrony at single-cell resolution. Sensory stimulation evoked aldolase C compartment-specific complex spike responses and synchrony. This result further revealed the structure-function segregation. In awake animals, complex spike synchrony both within and between PC populations across the aldolase C boundary were enhanced in response to sensory stimuli, in a way that two functionally distinct PC ensembles are coactivated. These results suggest that PC populations characterized by aldolase C expression precisely represent distinct functional units of the cerebellar cortex, and these functional units can cooperate to process sensory information in awake animals.
Collapse
|
10
|
Kruse W, Krause M, Aarse J, Mark MD, Manahan-Vaughan D, Herlitze S. Optogenetic modulation and multi-electrode analysis of cerebellar networks in vivo. PLoS One 2014; 9:e105589. [PMID: 25144735 PMCID: PMC4140813 DOI: 10.1371/journal.pone.0105589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/22/2014] [Indexed: 01/31/2023] Open
Abstract
The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2) expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice.
Collapse
Affiliation(s)
- Wolfgang Kruse
- Department of Zoology and Neurobiology, Faculty for Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
- * E-mail:
| | - Martin Krause
- Department of Zoology and Neurobiology, Faculty for Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Janna Aarse
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Melanie D. Mark
- Department of Zoology and Neurobiology, Faculty for Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Faculty for Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge. Proc Natl Acad Sci U S A 2013; 110:16223-8. [PMID: 24046366 DOI: 10.1073/pnas.1302310110] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Climbing fibers, the projections from the inferior olive to the cerebellar cortex, carry sensorimotor error and clock signals that trigger motor learning by controlling cerebellar Purkinje cell synaptic plasticity and discharge. Purkinje cells target the deep cerebellar nuclei, which are the output of the cerebellum and include an inhibitory GABAergic projection to the inferior olive. This pathway identifies a potential closed loop in the olivo-cortico-nuclear network. Therefore, sets of Purkinje cells may phasically control their own climbing fiber afferents. Here, using in vitro and in vivo recordings, we describe a genetically modified mouse model that allows the specific optogenetic control of Purkinje cell discharge. Tetrode recordings in the cerebellar nuclei demonstrate that focal stimulations of Purkinje cells strongly inhibit spatially restricted sets of cerebellar nuclear neurons. Strikingly, such stimulations trigger delayed climbing-fiber input signals in the stimulated Purkinje cells. Therefore, our results demonstrate that Purkinje cells phasically control the discharge of their own olivary afferents and thus might participate in the regulation of cerebellar motor learning.
Collapse
|