1
|
GÜZEL H, ASLAN E. Does the Anticholinergic Drug Biperiden Affect Early Neural Tube Development in Chick Embryos? MUSTAFA KEMAL ÜNIVERSITESI TIP DERGISI 2022. [DOI: 10.17944/mkutfd.986503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: Biperiden (BPD) is an anticholinergic agent that acts both centrally and peripherally. It is used to counteract both extrapyramidal side effects of neuroleptic treatment and symptoms of Parkinson’s disease in clinical practice. Current study was layout to determine the potential toxic effect of different doses of Biperiden on neural tube closure in 48 hour chick embryos. Methods: Sixty fertilized eggs were used in the study. All eggs were placed in the incubator and divided into four groups (15 eggs in each); control, BPD 1, BPA 2 and BPD 3. At 28 hr of incubation, three different doses of biperiden were administered subblastodermically. At the end of 48 hr of incubation, all eggs were opened and embryos were dissected and evaluated morphologically and histopathologically. Results: According to these results, the mean crown-rump length and somite number tended to decrease proportionally with the dose. As the dose increases, the number of open neural tube and undeveloped embryos in the experimental groups also increases. There was also a significant difference between the groups in terms of Hamburger-Hamilton stages of embryos evaluated according to the number of somite. Embryos in the control, BPD 1 and BPD 2 groups were observed at stage 13, and those in the BPD 3 group were observed at stage 12. Conclusion: These results showed that Biperiden even in the low dose has teratogenicity on neural tube closure in early chick embryos. The somite numbers and crown-rump length were decreased depending on the dose and Biperiden caused developmental retardation in high doses.
Collapse
Affiliation(s)
- Hilal GÜZEL
- Afyonkarahisar Sağlık Bilimleri Üniversitesi
| | - Esra ASLAN
- Afyonkarahisar Sağlık Bilimleri Üniversitesi
| |
Collapse
|
2
|
Blokland A. Cholinergic models of memory impairment in animals and man: scopolamine vs. biperiden. Behav Pharmacol 2022; 33:231-237. [PMID: 35621168 DOI: 10.1097/fbp.0000000000000670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Scopolamine has been used as a pharmacologic model for cognitive impairments in dementia and Alzheimer's disease. The validity of this model seems to be limited because findings in animals do not readily translate to novel treatments in humans. Biperiden is also a cholinergic deficit model for cognitive impairments but specifically blocks muscarinic M1 receptors. The effects of scopolamine and biperiden (and pirenzepine) are compared in animal studies and related to findings in humans. It is concluded that the effects on cognitive functions are different for scopolamine and biperiden, and they should be considered as different cognitive deficit models. Scopolamine may model more advanced stages of Alzheimer's disease whereas biperiden may model the early deficits in declarative memory in aging and mild cognitive impairment.
Collapse
Affiliation(s)
- Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Meléndez DM, Nordquist RE, Vanderschuren LJMJ, van der Staay FJ. Spatial memory deficits after vincristine-induced lesions to the dorsal hippocampus. PLoS One 2020; 15:e0231941. [PMID: 32315349 PMCID: PMC7173870 DOI: 10.1371/journal.pone.0231941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 04/04/2020] [Indexed: 11/23/2022] Open
Abstract
Vincristine is a commonly used cytostatic drug for the treatment of leukemia, neuroblastoma and lung cancer, which is known to have neurotoxic properties. The aim of this study was to assess the effects of vincristine, injected directly into the dorsal hippocampus, in spatial memory using the spatial cone field discrimination task. Long Evans rats were trained in the cone field, and after reaching training criterion received bilateral vincristine infusions into the dorsal hippocampus. Vincristine-treated animals presented unilateral or bilateral hippocampal lesions. Animals with bilateral lesions showed lower spatial working and reference memory performance than control animals, but task motivation was unaffected by the lesions. Working and reference memory of animals with unilateral lesions did not differ from animals with bilateral lesions and control animals. In sum, intrahippocampal injection of vincristine caused profound tissue damage in the dorsal hippocampus, associated with substantial cognitive deficits.
Collapse
Affiliation(s)
- Daniela M. Meléndez
- Division of Farm Animal Health, Department of Population Health Sciences, Behaviour and Welfare Group, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rebecca E. Nordquist
- Division of Farm Animal Health, Department of Population Health Sciences, Behaviour and Welfare Group, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Population Health Sciences, Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| | - Louk J. M. J. Vanderschuren
- Department of Population Health Sciences, Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Franz-Josef van der Staay
- Division of Farm Animal Health, Department of Population Health Sciences, Behaviour and Welfare Group, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Volgin AD, Yakovlev OA, Demin KA, Alekseeva PA, Kyzar EJ, Collins C, Nichols DE, Kalueff AV. Understanding Central Nervous System Effects of Deliriant Hallucinogenic Drugs through Experimental Animal Models. ACS Chem Neurosci 2019; 10:143-154. [PMID: 30252437 DOI: 10.1021/acschemneuro.8b00433] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hallucinogenic drugs potently alter human behavior and have a millennia-long history of use for medicinal and religious purposes. Interest is rapidly growing in their potential as CNS modulators and therapeutic agents for brain conditions. Antimuscarinic cholinergic drugs, such as atropine and scopolamine, induce characteristic hyperactivity and dream-like hallucinations and form a separate group of hallucinogens known as "deliriants". Although atropine and scopolamine are relatively well-studied drugs in cholinergic physiology, deliriants represent the least-studied class of hallucinogens in terms of their behavioral and neurological phenotypes. As such, novel approaches and new model organisms are needed to investigate the CNS effects of these compounds. Here, we comprehensively evaluate the preclinical effects of deliriant hallucinogens in various animal models, their mechanisms of action, and potential interplay with other signaling pathways. We also parallel experimental and clinical findings on deliriant agents and outline future directions of translational research in this field.
Collapse
Affiliation(s)
- Andrey D. Volgin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Military Medical Academy, St. Petersburg 194044, Russia
| | - Oleg A. Yakovlev
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Military Medical Academy, St. Petersburg 194044, Russia
| | | | | | - Evan J. Kyzar
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- The International Zebrafish Neuroscience Research Consortium (ZNRC), New Orleans, Louisiana 70458, United States
| | - Christopher Collins
- The International Zebrafish Neuroscience Research Consortium (ZNRC), New Orleans, Louisiana 70458, United States
| | - David E. Nichols
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Allan V. Kalueff
- School of Pharmacy, Southwest University, Chongqing 400716, China
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk 630117, Russiai
- Ural Federal University, Ekaterinburg 620075, Russia
- ZENEREI Research Center, Slidell, Louisiana 70458, United States
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
5
|
Mnemonic and behavioral effects of biperiden, an M1-selective antagonist, in the rat. Psychopharmacology (Berl) 2018; 235:2013-2025. [PMID: 29680966 DOI: 10.1007/s00213-018-4899-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
RATIONALE There is a persistent pressing need for valid animal models of cognitive and mnemonic disruptions (such as seen in Alzheimer's disease and other dementias) usable for preclinical research. OBJECTIVES We have set out to test the validity of administration of biperiden, an M1-acetylcholine receptor antagonist with central selectivity, as a potential tool for generating a fast screening model of cognitive impairment, in outbred Wistar rats. METHODS We used several variants of the Morris water maze task: (1) reversal learning, to assess cognitive flexibility, with probe trials testing memory retention; (2) delayed matching to position (DMP), to evaluate working memory; and (3) "counter-balanced acquisition," to test for possible anomalies in acquisition learning. We also included a visible platform paradigm to reveal possible sensorimotor and motivational deficits. RESULTS A significant effect of biperiden on memory acquisition and retention was found in the counter-balanced acquisition and probe trials of the counter-balanced acquisition and reversal tasks. Strikingly, a less pronounced deficit was observed in the DMP. No effects were revealed in the reversal learning task. CONCLUSIONS Based on our results, we do not recommend biperiden as a reliable tool for modeling cognitive impairment.
Collapse
|
6
|
Bagewadi S, Adhikari S, Dhrangadhariya A, Irin AK, Ebeling C, Namasivayam AA, Page M, Hofmann-Apitius M, Senger P. NeuroTransDB: highly curated and structured transcriptomic metadata for neurodegenerative diseases. Database (Oxford) 2015; 2015:bav099. [PMID: 26475471 PMCID: PMC4608514 DOI: 10.1093/database/bav099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 09/07/2015] [Accepted: 09/10/2015] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are chronic debilitating conditions, characterized by progressive loss of neurons that represent a significant health care burden as the global elderly population continues to grow. Over the past decade, high-throughput technologies such as the Affymetrix GeneChip microarrays have provided new perspectives into the pathomechanisms underlying neurodegeneration. Public transcriptomic data repositories, namely Gene Expression Omnibus and curated ArrayExpress, enable researchers to conduct integrative meta-analysis; increasing the power to detect differentially regulated genes in disease and explore patterns of gene dysregulation across biologically related studies. The reliability of retrospective, large-scale integrative analyses depends on an appropriate combination of related datasets, in turn requiring detailed meta-annotations capturing the experimental setup. In most cases, we observe huge variation in compliance to defined standards for submitted metadata in public databases. Much of the information to complete, or refine meta-annotations are distributed in the associated publications. For example, tissue preparation or comorbidity information is frequently described in an article's supplementary tables. Several value-added databases have employed additional manual efforts to overcome this limitation. However, none of these databases explicate annotations that distinguish human and animal models in neurodegeneration context. Therefore, adopting a more specific disease focus, in combination with dedicated disease ontologies, will better empower the selection of comparable studies with refined annotations to address the research question at hand. In this article, we describe the detailed development of NeuroTransDB, a manually curated database containing metadata annotations for neurodegenerative studies. The database contains more than 20 dimensions of metadata annotations within 31 mouse, 5 rat and 45 human studies, defined in collaboration with domain disease experts. We elucidate the step-by-step guidelines used to critically prioritize studies from public archives and their metadata curation and discuss the key challenges encountered. Curated metadata for Alzheimer's disease gene expression studies are available for download. Database URL: www.scai.fraunhofer.de/NeuroTransDB.html.
Collapse
Affiliation(s)
- Shweta Bagewadi
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754 Sankt Augustin, Germany, Rheinische Friedrich-Wilhelms-Universitaet Bonn, Bonn-Aachen International Center for Information Technology, 53113, Bonn, Germany,
| | - Subash Adhikari
- Department of Chemistry, South University of Science and Technology of China, No 1088, Xueyuan Road, Xili, Shenzhen, China
| | - Anjani Dhrangadhariya
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754 Sankt Augustin, Germany, Rheinische Friedrich-Wilhelms-Universitaet Bonn, Bonn-Aachen International Center for Information Technology, 53113, Bonn, Germany
| | - Afroza Khanam Irin
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754 Sankt Augustin, Germany, Rheinische Friedrich-Wilhelms-Universitaet Bonn, Bonn-Aachen International Center for Information Technology, 53113, Bonn, Germany
| | - Christian Ebeling
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Aishwarya Alex Namasivayam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg and
| | - Matthew Page
- Translational Bioinformatics, UCB Pharma, 216 Bath Rd, Slough SL1 3WE, United Kingdom
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754 Sankt Augustin, Germany, Rheinische Friedrich-Wilhelms-Universitaet Bonn, Bonn-Aachen International Center for Information Technology, 53113, Bonn, Germany
| | - Philipp Senger
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754 Sankt Augustin, Germany,
| |
Collapse
|
7
|
Siavelis JC, Bourdakou MM, Athanasiadis EI, Spyrou GM, Nikita KS. Bioinformatics methods in drug repurposing for Alzheimer's disease. Brief Bioinform 2015. [PMID: 26197808 DOI: 10.1093/bib/bbv048] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alarming epidemiological features of Alzheimer's disease impose curative treatment rather than symptomatic relief. Drug repurposing, that is reappraisal of a substance's indications against other diseases, offers time, cost and efficiency benefits in drug development, especially when in silico techniques are used. In this study, we have used gene signatures, where up- and down-regulated gene lists summarize a cell's gene expression perturbation from a drug or disease. To cope with the inherent biological and computational noise, we used an integrative approach on five disease-related microarray data sets of hippocampal origin with three different methods of evaluating differential gene expression and four drug repurposing tools. We found a list of 27 potential anti-Alzheimer agents that were additionally processed with regard to molecular similarity, pathway/ontology enrichment and network analysis. Protein kinase C, histone deacetylase, glycogen synthase kinase 3 and arginase inhibitors appear consistently in the resultant drug list and may exert their pharmacologic action in an epidermal growth factor receptor-mediated subpathway of Alzheimer's disease.
Collapse
|
8
|
Important poisonous plants in tibetan ethnomedicine. Toxins (Basel) 2015; 7:138-55. [PMID: 25594733 PMCID: PMC4303819 DOI: 10.3390/toxins7010138] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/07/2015] [Indexed: 11/17/2022] Open
Abstract
Tibetan ethnomedicine is famous worldwide, both for its high effectiveness and unique cultural background. Many poisonous plants have been widely used to treat disorders in the Tibetan medicinal system. In the present review article, some representative poisonous plant species are introduced in terms of their significance in traditional Tibetan medicinal practices. They are Aconitumpendulum, Strychnos nux-vomica, Daturastramonium and Anisodus tanguticus, for which the toxic chemical constituents, bioactivities and pharmacological functions are reviewed herein. The most important toxins include aconitine, strychnine, scopolamine, and anisodamine. These toxic plants are still currently in use for pain-reduction and other purposes by Tibetan healers after processing.
Collapse
|