1
|
Chang L, He Y, Li B. Role of the medial septum neurotensin receptor 1 in anxiety-like behaviors evoked by emotional stress. Psychoneuroendocrinology 2025; 172:107275. [PMID: 39787865 DOI: 10.1016/j.psyneuen.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/07/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Anxiety is one of the most common mental disorders. Neurotensin (NT) is a neuropeptide widely distributed in the central nervous system, involved in the pathophysiology of many neural and psychiatric disorders such as anxiety. However, the neural substrates mediating NT's effect on the regulation of anxiety have not been fully identified. The medial septum (MS) is a crucial brain region in regulating anxiety and expresses neurotensin receptor 1 (NTS1). In the current study, we examined the role of NT/NTS1 in the MS on the anxiety-like behaviors of rats in non-stress and acute stress conditions. We reported that intra-MS infusion of NT produced remarkable anxiogenic effect in behavioral tests. The anxiogenic effect could be blocked by NTS1 antagonist SR48692 pretreatment. Microinjection of NTS1 antagonist to block endogenously released NT in the MS had no effect on anxiety-like behaviors in non-stressed rats, but significantly reduced anxiety in acute restraint stressed rats. Moreover, molecular knockdown of NTS1 in the MS ameliorated anxiety induced by acute restraint stress, also confirming the pharmacological results. Our study implicates NT and its receptors as potential targets for therapeutic interventions of psychiatric diseases, such as anxiety.
Collapse
Affiliation(s)
- Leilei Chang
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yecheng He
- Department of Preclinical Medicine, Suzhou Vocational Health College, Suzhou 215009, China
| | - Bin Li
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. The neurotensin receptor 1 agonist PD149163 alleviates visceral hypersensitivity and colonic hyperpermeability in rat irritable bowel syndrome model. Neurogastroenterol Motil 2024; 36:e14925. [PMID: 39314062 DOI: 10.1111/nmo.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/30/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND An impaired intestinal barrier with the activation of corticotropin-releasing factor (CRF), Toll-like receptor 4 (TLR4), and proinflammatory cytokine signaling, resulting in visceral hypersensitivity, is a crucial aspect of irritable bowel syndrome (IBS). The gut exhibits abundant expression of neurotensin; however, its role in the pathophysiology of IBS remains uncertain. This study aimed to clarify the effects of PD149163, a specific agonist for neurotensin receptor 1 (NTR1), on visceral sensation and gut barrier in rat IBS models. METHODS The visceral pain threshold in response to colonic balloon distention was electrophysiologically determined by monitoring abdominal muscle contractions, while colonic permeability was measured by quantifying absorbed Evans blue in colonic tissue in vivo in adult male Sprague-Dawley rats. We employed the rat IBS models, i.e., lipopolysaccharide (LPS)- and CRF-induced visceral hypersensitivity and colonic hyperpermeability, and explored the effects of PD149163. KEY RESULTS Intraperitoneal PD149163 (160, 240, 320 μg kg-1) prevented LPS (1 mg kg-1, subcutaneously)-induced visceral hypersensitivity and colonic hyperpermeability dose-dependently. It also prevented the gastrointestinal changes induced by CRF (50 μg kg-1, intraperitoneally). Peripheral atropine, bicuculline (a GABAA receptor antagonist), sulpiride (a dopamine D2 receptor antagonist), astressin2-B (a CRF receptor subtype 2 [CRF2] antagonist), and intracisternal SB-334867 (an orexin 1 receptor antagonist) reversed these effects of PD149163 in the LPS model. CONCLUSIONS AND INFERENCES PD149163 demonstrated an improvement in visceral hypersensitivity and colonic hyperpermeability in rat IBS models through the dopamine D2, GABAA, orexin, CRF2, and cholinergic pathways. Activation of NTR1 may modulate these gastrointestinal changes, helping to alleviate IBS symptoms.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Center for Medical Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Saori Miyagishi
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Masatomo Ishioh
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
3
|
Gu L, Ye L, Chen Y, Deng C, Zhang X, Chang J, Feng M, Wei J, Bao X, Wang R. Integrating network pharmacology and transcriptomic omics reveals that akebia saponin D attenuates neutrophil extracellular traps-induced neuroinflammation via NTSR1/PKAc/PAD4 pathway after intracerebral hemorrhage. FASEB J 2024; 38:e23394. [PMID: 38149910 DOI: 10.1096/fj.202301815r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/17/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023]
Abstract
Neutrophils and their production of neutrophil extracellular traps (NETs) significantly contribute to neuroinflammation and brain damage after intracerebral hemorrhage (ICH). Although Akebia saponin D (ASD) demonstrates strong anti-inflammatory activities and blood-brain barrier permeability, its role in regulating NETs formation and neuroinflammation following ICH is uncharted. Our research focused on unraveling the influence of ASD on neuroinflammation mediated by NETs and the mechanisms involved. We found that increased levels of peripheral blood neutrophils post-ICH are correlated with worse prognostic outcomes. Through network pharmacology, we identified ASD as a promising therapeutic target for ICH. ASD administration significantly improved neurobehavioral performance and decreased NETs production in neutrophils. Furthermore, ASD was shown to upregulate the membrane protein NTSR1 and activate the cAMP signaling pathway, confirmed through transcriptome sequencing, western blot, and immunofluorescence. Interestingly, the NTSR1 inhibitor SR48692 significantly nullified ASD's anti-NETs effects and dampened cAMP pathway activation. Mechanistically, suppression of PKAc via H89 negated ASD's anti-NETs effects but did not affect NTSR1. Our study suggests that ASD may reduce NETs formation and neuroinflammation, potentially involving the NTSR1/PKAc/PAD4 pathway post-ICH, underlining the potential of ASD in mitigating neuroinflammation through its anti-NETs properties.
Collapse
Affiliation(s)
- Lingui Gu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liguo Ye
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yihao Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congcong Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianbo Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junji Wei
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese University of Hong Kong (Shenzhen) School of Medicine, People's Republic of China, Shenzhen, China
| |
Collapse
|
4
|
Okdeh N, Mahfouz G, Harb J, Sabatier JM, Roufayel R, Gazo Hanna E, Kovacic H, Fajloun Z. Protective Role and Functional Engineering of Neuropeptides in Depression and Anxiety: An Overview. Bioengineering (Basel) 2023; 10:258. [PMID: 36829752 PMCID: PMC9952193 DOI: 10.3390/bioengineering10020258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Behavioral disorders, such as anxiety and depression, are prevalent globally and touch children and adults on a regular basis. Therefore, it is critical to comprehend how these disorders are affected. It has been demonstrated that neuropeptides can influence behavior, emotional reactions, and behavioral disorders. This review highlights the majority of the findings demonstrating neuropeptides' behavioral role and functional engineering in depression and anxiety. Gut-brain peptides, hypothalamic releasing hormone peptides, opioid peptides, and pituitary hormone peptides are the four major groups of neuropeptides discussed. Some neuropeptides appear to promote depression and anxiety-like symptoms, whereas others seem to reduce it, all depending on the receptors they are acting on and on the brain region they are localized in. The data supplied here are an excellent starting point for future therapy interventions aimed at treating anxiety and depression.
Collapse
Affiliation(s)
- Nathalie Okdeh
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| | - Georges Mahfouz
- Department of Psychology, Faculty of Arts and Sciences, Beirut Campus, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Julien Harb
- Faculty of Medicine and Medical Sciences, Dekouene Campus, University of Balamand, Sin El Fil 55251, Lebanon
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Eddie Gazo Hanna
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Hervé Kovacic
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| |
Collapse
|
5
|
Soares-Cunha C, Heinsbroek JA. Ventral pallidal regulation of motivated behaviors and reinforcement. Front Neural Circuits 2023; 17:1086053. [PMID: 36817646 PMCID: PMC9932340 DOI: 10.3389/fncir.2023.1086053] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
The interconnected nuclei of the ventral basal ganglia have long been identified as key regulators of motivated behavior, and dysfunction of this circuit is strongly implicated in mood and substance use disorders. The ventral pallidum (VP) is a central node of the ventral basal ganglia, and recent studies have revealed complex VP cellular heterogeneity and cell- and circuit-specific regulation of reward, aversion, motivation, and drug-seeking behaviors. Although the VP is canonically considered a relay and output structure for this circuit, emerging data indicate that the VP is a central hub in an extensive network for reward processing and the regulation of motivation that extends beyond classically defined basal ganglia borders. VP neurons respond temporally faster and show more advanced reward coding and prediction error processing than neurons in the upstream nucleus accumbens, and regulate the activity of the ventral mesencephalon dopamine system. This review will summarize recent findings in the literature and provide an update on the complex cellular heterogeneity and cell- and circuit-specific regulation of motivated behaviors and reinforcement by the VP with a specific focus on mood and substance use disorders. In addition, we will discuss mechanisms by which stress and drug exposure alter the functioning of the VP and produce susceptibility to neuropsychiatric disorders. Lastly, we will outline unanswered questions and identify future directions for studies necessary to further clarify the central role of VP neurons in the regulation of motivated behaviors. Significance: Research in the last decade has revealed a complex cell- and circuit-specific role for the VP in reward processing and the regulation of motivated behaviors. Novel insights obtained using cell- and circuit-specific interrogation strategies have led to a major shift in our understanding of this region. Here, we provide a comprehensive review of the VP in which we integrate novel findings with the existing literature and highlight the emerging role of the VP as a linchpin of the neural systems that regulate motivation, reward, and aversion. In addition, we discuss the dysfunction of the VP in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
6
|
Morais-Silva G, Campbell RR, Nam H, Basu M, Pagliusi M, Fox ME, Chan CS, Iñiguez SD, Ament S, Cramer N, Marin MT, Lobo MK. Molecular, Circuit, and Stress Response Characterization of Ventral Pallidum Npas1-Neurons. J Neurosci 2023; 43:405-418. [PMID: 36443000 PMCID: PMC9864552 DOI: 10.1523/jneurosci.0971-22.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022] Open
Abstract
Altered activity of the ventral pallidum (VP) underlies disrupted motivation in stress and drug exposure. The VP is a very heterogeneous structure composed of many neuron types with distinct physiological properties and projections. Neuronal PAS 1-positive (Npas1+) VP neurons are thought to send projections to brain regions critical for motivational behavior. While Npas1+ neurons have been characterized in the globus pallidus external, there is limited information on these neurons in the VP. To address this limitation, we evaluated the projection targets of the VP Npas1+ neurons and performed RNA-sequencing on ribosome-associated mRNA from VP Npas1+ neurons to determine their molecular identity. Finally, we used a chemogenetic approach to manipulate VP Npas1+ neurons during social defeat stress (SDS) and behavioral tasks related to anxiety and motivation in Npas1-Cre mice. We used a similar approach in females using the chronic witness defeat stress (CWDS). We identified VP Npas1+ projections to the nucleus accumbens, ventral tegmental area, medial and lateral habenula, lateral hypothalamus, thalamus, medial and lateral septum, and periaqueductal gray area. VP Npas1+ neurons displayed distinct translatome representing distinct biological processes. Chemogenetic activation of hM3D(Gq) receptors in VP Npas1+ neurons increased susceptibility to a subthreshold SDS and anxiety-like behavior in the elevated plus maze and open field while the activation of hM4D(Gi) receptors in VP Npas1+ neurons enhanced resilience to chronic SDS and CWDS. Thus, the activity of VP Npas1+ neurons modulates susceptibility to social stressors and anxiety-like behavior. Our studies provide new information on VP Npas1+ neuron circuitry, molecular identity, and their role in stress response.SIGNIFICANCE STATEMENT The ventral pallidum (VP) is a structure connected to both reward-related and aversive brain centers. It is a key brain area that signals the hedonic value of natural rewards. Disruption in the VP underlies altered motivation in stress and substance use disorder. However, VP is a very heterogeneous area with multiple neuron subtypes. This study characterized the projection pattern and molecular signatures of VP Neuronal PAS 1-positive (Npas1+) neurons. We further used tools to alter receptor signaling in VP Npas1+ neurons in stress to demonstrate a role for these neurons in stress behavioral outcomes. Our studies have implications for understanding brain cell type identities and their role in brain disorders, such as depression, a serious disorder that is precipitated by stressful events.
Collapse
Affiliation(s)
- Gessynger Morais-Silva
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, Sao Paulo 14800903, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos/Sao Paulo State University, CEP 13565-905, São Carlos/Araraquara, Brazil
| | - Rianne R Campbell
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Hyungwoo Nam
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mahashweta Basu
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Marco Pagliusi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Structural and Functional Biology, State University of Campinas, SP-13083-872, Campinas, Brazil
| | - Megan E Fox
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Sergio D Iñiguez
- Department of Psychology, University of Texas at El Paso, El Paso, Texas 79902
| | - Seth Ament
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Nathan Cramer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Marcelo Tadeu Marin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, Sao Paulo 14800903, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos/Sao Paulo State University, CEP 13565-905, São Carlos/Araraquara, Brazil
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
7
|
Ollmann T, Lénárd L, Péczely L, Berta B, Kertes E, Zagorácz O, Hormay E, László K, Szabó Á, Gálosi R, Karádi Z, Kállai V. Effect of D1- and D2-like Dopamine Receptor Antagonists on the Rewarding and Anxiolytic Effects of Neurotensin in the Ventral Pallidum. Biomedicines 2022; 10:biomedicines10092104. [PMID: 36140205 PMCID: PMC9495457 DOI: 10.3390/biomedicines10092104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Neurotensin (NT) acts as a neurotransmitter and neuromodulator in the central nervous system. It was shown previously that NT in the ventral pallidum (VP) has rewarding and anxiolytic effects. NT exerts its effect in interaction with dopamine (DA) receptors in numerous brain areas; however, this has not yet been investigated in the VP. The aim of this study was to examine whether the inhibition of D1-like and D2-like DA receptors of the VP can modify the above mentioned effects of NT. Methods: Microinjection cannulas were implanted by means of stereotaxic operations into the VP of male Wistar rats. The rewarding effect of NT was examined by means of a conditioned place preference test. Anxiety was investigated with an elevated plus maze test. To investigate the possible interaction, D1-like DA receptor antagonist SCH23390 or D2-like DA receptor antagonist sulpiride were microinjected prior to NT. All of the drugs were also injected independently to analyze their effects alone. Results: In the present experiments, both the rewarding and anxiolytic effects of NT in the VP were prevented by both D1-like and D2-like DA receptor antagonists. Administered on their own, the antagonists did not influence reward and anxiety. Conclusion: Our present results show that the activity of the D1-like and D2-like DA receptors of the VP is a necessary requirement for both the rewarding and anxiolytic effects of NT.
Collapse
Affiliation(s)
- Tamás Ollmann
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-72-536000 (ext. 31095)
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, H-7624 Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Beáta Berta
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Olga Zagorácz
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Edina Hormay
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Ádám Szabó
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Rita Gálosi
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, H-7624 Pécs, Hungary
| | - Veronika Kállai
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
8
|
Carboni L, El Khoury A, Beiderbeck DI, Neumann ID, Mathé AA. Neuropeptide Y, calcitonin gene-related peptide, and neurokinin A in brain regions of HAB rats correlate with anxiety-like behaviours. Eur Neuropsychopharmacol 2022; 57:1-14. [PMID: 35008014 DOI: 10.1016/j.euroneuro.2021.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022]
Abstract
Anxiety disorders are pervasive psychiatric disorders causing great suffering. The high (HAB) and low (LAB) anxiety-related behaviour rats were selectively bred to investigate neurobiological correlates of anxiety. We compared the level of neuropeptides relevant for anxiety- and depression-related behaviours in selected brain regions of HAB and LAB rats. Increased anxiety and depression-like behaviours of male and female HAB rats in the elevated plus-maze and forced swim tests were accompanied by elevated levels of neuropeptide Y (NPY) in the prefrontal (PFC), frontal (FC) and cingulate cortex (CCx), the striatum, and periaqueductal grey (PAG). Moreover, HAB rats displayed sex-dependent, elevated levels of calcitonin gene-related peptide (CGRP) in PFC, FC, CCx, hippocampus, and PAG. Higher neurokinin A (NKA) levels were detected in CCx, striatum, and PAG in HAB males and in CCx and hypothalamus in HAB females. Increased neurotensin was detected in CCx and PAG in HAB males and in hypothalamus in HAB females. Elevated corticotropin-releasing hormone (CRH) levels appeared in female HAB hypothalamus. Significant correlations were found between anxiety-like behaviour and NPY, CGRP, NKA, and neurotensin, particularly with NPY in CCx and striatum, CGRP in FC and hippocampus, and NKA in entorhinal cortex. This is the first report of NPY, CGRP, NKA, Neurotensin, and CRH measurements in brain regions of HAB and LAB rats, which showed widespread NPY and CGRP alterations in cortical regions, with NKA and neurotensin changes localised in sub-cortical areas. The results may contribute to elucidate pathophysiological mechanisms underlying anxiety and depression and should facilitate identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Aram El Khoury
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Daniela I Beiderbeck
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040, Regensburg, Germany
| | - Aleksander A Mathé
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| |
Collapse
|
9
|
Wölk E, Stengel A, Schaper SJ, Rose M, Hofmann T. Neurotensin and Xenin Show Positive Correlations With Perceived Stress, Anxiety, Depressiveness and Eating Disorder Symptoms in Female Obese Patients. Front Behav Neurosci 2021; 15:629729. [PMID: 33664656 PMCID: PMC7921165 DOI: 10.3389/fnbeh.2021.629729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/28/2021] [Indexed: 12/25/2022] Open
Abstract
Objective Neurotensin and xenin are two closely related anorexigenic neuropeptides synthesized in the small intestine that exert diverse peripheral and central functions. Both act via the neurotensin-1-receptor. In animal models of obesity reduced central concentrations of these peptides have been found. Dysregulations of the acute and chronic stress response are associated with development and maintenance of obesity. Until now, associations of both peptides with stress, anxiety, depressiveness, and eating disorder symptoms have not been investigated. The aim of the present study was to examine associations of neurotensin and xenin with these psychological characteristics under conditions of obesity. Materials and Methods From 2010 to 2016 we consecutively enrolled 160 inpatients (63 men and 97 women), admitted due to obesity and its mental and somatic comorbidities. Blood withdrawal und psychometric tests (PSQ-20, GAD-7, PHQ-9, and EDI-2) occurred within one week after admission. We measured levels of neurotensin and xenin in plasma by ELISA. Results Mean body mass index was 47.2 ± 9.5 kg/m2. Concentrations of neurotensin and xenin positively correlated with each other (women: r = 0.788, p < 0.001; men: r = 0.731, p < 0.001) and did not significantly differ between sexes (p > 0.05). Women generally displayed higher psychometric values than men (PSQ-20: 58.2 ± 21.7 vs. 47.0 ± 20.8, p = 0.002; GAD-7: 9.7 ± 5.8 vs. 7.1 ± 5.3, p = 0.004; PHQ-9: 11.6 ± 6.6 vs. 8.8 ± 5.9, p = 0.008; EDI-2: 50.5 ± 12.8 vs. 39.7 ± 11.9, p < 0.001). Only women showed positive correlations of both neuropeptides with stress (neurotensin: r = 0.231, p = 0.023; xenin: r = 0.254, p = 0.013), anxiety (neurotensin: r = 0.265, p = 0.009; xenin: r = 0.257, p = 0.012), depressiveness (neurotensin: r = 0.281, p = 0.006; xenin: r = 0.241, p = 0.019) and eating disorder symptoms (neurotensin: r = 0.276, p = 0.007; xenin: r = 0.26, p = 0.011), whereas, men did not (p > 0.05). Conclusion Neurotensin and xenin plasma levels of female obese patients are positively correlated with perceived stress, anxiety, depressiveness, and eating disorder symptoms. These associations could be influenced by higher prevalence of mental disorders in women and by sex hormones. In men, no correlations were observed, which points toward a sex-dependent regulation.
Collapse
Affiliation(s)
- Ellen Wölk
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Selina Johanna Schaper
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Rose
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Hofmann
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Li B, Chang LL, Xi K. Neurotensin 1 receptor in the prelimbic cortex regulates anxiety-like behavior in rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110011. [PMID: 32561375 DOI: 10.1016/j.pnpbp.2020.110011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/13/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023]
Abstract
The central neurotensin system has been implicated in reward, memory processes, also in the regulation of anxiety. However, the neural substrates where neurotensin acts to regulate anxiety have not been fully identified. The prelimbic region of medial prefrontal cortex (PrL) holds a key position in the modulation of anxiety-related behaviors and expresses neurotensin 1 receptor (NTS1). This study investigated the effects of activation or blockade of NTS1 in the PrL on anxiety-like behaviors of rats. Our results demonstrated that infusion of a selective NTS1 agonist or neurotensin into the PrL produced anxiogenic-like effects. Administration of a NTS1 antagonist into the PrL did not affect anxiety-like behaviors of normal rats, but attenuated anxiogenic effects induced by restraint stress. Moreover, we employed molecular approaches to downregulate the expression of NTS1 in the PrL, and found that downregulation of NTS1 in the PrL induced anxiolytic effects in restraint stress rats, also confirming the pharmacological results. Together, these findings suggest that NTS1 in the PrL is actively involved in the regulation of anxiety.
Collapse
Affiliation(s)
- Bin Li
- Clinical Research Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China.
| | - Lei-Lei Chang
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, China
| | - Kang Xi
- Clinical Research Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| |
Collapse
|
11
|
Lénárd L, László K, Kertes E, Ollmann T, Péczely L, Kovács A, Kállai V, Zagorácz O, Gálosi R, Karádi Z. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 2018; 85:1-20. [DOI: 10.1016/j.neubiorev.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
|
12
|
Ruan CS, Yang CR, Li JY, Luo HY, Bobrovskaya L, Zhou XF. Mice with Sort1 deficiency display normal cognition but elevated anxiety-like behavior. Exp Neurol 2016; 281:99-108. [PMID: 27118371 DOI: 10.1016/j.expneurol.2016.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/21/2016] [Accepted: 04/14/2016] [Indexed: 12/20/2022]
Abstract
Exposure to stressful life events plays a central role in the development of mood disorders in vulnerable individuals. However, the mechanisms that link mood disorders to stress are poorly understood. Brain-derived neurotrophic factor (BDNF) has long been implicated in positive regulation of depression and anxiety, while its precursor (proBDNF) recently showed an opposing effect on such mental illnesses. P75(NTR) and sortilin are co-receptors of proBDNF, however, the role of these receptors in mood regulation is not established. Here, we aimed to investigate the role of sortilin in regulating mood-related behaviors and its role in the proBDNF-mediated mood abnormality in mice. We found that sortilin was up-regulated in neocortex (by 78.3%) and hippocampus (by 111%) of chronically stressed mice as assessed by western blot analysis. These changes were associated with decreased mobility in the open field test and increased depression-like behavior in the forced swimming test. We also found that sortilin deficiency in mice resulted in hyperlocomotion in the open field test and increased anxiety-like behavior in both the open field and elevated plus maze tests. No depression-like behavior in the forced swimming test and no deficit in spatial cognition in the Morris water maze test were found in the Sort1-deficient mice. Moreover, the intracellular and extracellular levels of mature BDNF and proBDNF were not changed when sortilin was absent in vivo and in vitro. Finally, we found that both WT and Sort1-deficient mice injected with proBDNF in lateral ventricle displayed increased depression-like behavior in the forced swimming test but not anxiety-like behaviors in the open field and elevated plus maze tests. The present study suggests that sortilin functions as a negative regulator of mood performance and can be a therapeutic target for the treatment of mental illness.
Collapse
Affiliation(s)
- Chun-Sheng Ruan
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, SA 5000, Australia.
| | - Chun-Rui Yang
- Department of Pathology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jia-Yi Li
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, SA 5000, Australia
| | - Hai-Yun Luo
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, SA 5000, Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, SA 5000, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, SA 5000, Australia.
| |
Collapse
|