1
|
Green TE, Fujita A, Ghaderi N, Heinzen EL, Matsumoto N, Klein KM, Berkovic SF, Hildebrand MS. Brain mosaicism of hedgehog signalling and other cilia genes in hypothalamic hamartoma. Neurobiol Dis 2023; 185:106261. [PMID: 37579995 DOI: 10.1016/j.nbd.2023.106261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
Hypothalamic hamartoma (HH) is a rare benign developmental brain lesion commonly associated with a well characterized epilepsy phenotype. Most individuals with HH are non-syndromic without additional developmental anomalies nor a family history of disease. Nonetheless, HH is a feature of Pallister-Hall (PHS) and Oro-Facial-Digital Type VI (OFD VI) syndromes, both characterized by additional developmental anomalies. Initial genetic of analysis HH began with syndromic HH, where germline inherited or de novo variants in GLI3, encoding a central transcription factor in the sonic hedgehog (Shh) signalling pathway, were identified in most individuals with PHS. Following these discoveries in syndromic HH, the hypothesis that post-zygotic mosaicism in related genes may underly non-syndromic HH was tested. We discuss the identified mosaic variants within individuals with non-syndromic HH, review the analytical methodologies and diagnostic yields, and explore understanding of the functional role of the implicated genes with respect to Shh signalling, and cilia development and function. We also outline future challenges in studying non-syndromic HH and suggest potential novel strategies to interrogate brain mosaicism in HH.
Collapse
Affiliation(s)
- Timothy E Green
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Navid Ghaderi
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Erin L Heinzen
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Karl Martin Klein
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe University and University Hospital Frankfurt, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Freeman B, Mamallapalli J, Bian T, Ballas K, Lynch A, Scala A, Huo Z, Fredenburg KM, Bruijnzeel AW, Baglole CJ, Lu J, Salloum RG, Malaty J, Xing C. Opportunities and Challenges of Kava in Lung Cancer Prevention. Int J Mol Sci 2023; 24:ijms24119539. [PMID: 37298489 DOI: 10.3390/ijms24119539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths due to its high incidence, late diagnosis, and limited success in clinical treatment. Prevention therefore is critical to help improve lung cancer management. Although tobacco control and tobacco cessation are effective strategies for lung cancer prevention, the numbers of current and former smokers in the USA and globally are not expected to decrease significantly in the near future. Chemoprevention and interception are needed to help high-risk individuals reduce their lung cancer risk or delay lung cancer development. This article will review the epidemiological data, pre-clinical animal data, and limited clinical data that support the potential of kava in reducing human lung cancer risk via its holistic polypharmacological effects. To facilitate its future clinical translation, advanced knowledge is needed with respect to its mechanisms of action and the development of mechanism-based non-invasive biomarkers in addition to safety and efficacy in more clinically relevant animal models.
Collapse
Affiliation(s)
- Breanne Freeman
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Jessica Mamallapalli
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Tengfei Bian
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Kayleigh Ballas
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Allison Lynch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Alexander Scala
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kristianna M Fredenburg
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Carolyn J Baglole
- Department of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Junxuan Lu
- Department of Pharmacology, PennState Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Ramzi G Salloum
- Department of Health Outcome & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John Malaty
- Department of Community Health & Family Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
London E, Stratakis CA. The regulation of PKA signaling in obesity and in the maintenance of metabolic health. Pharmacol Ther 2022; 237:108113. [PMID: 35051439 DOI: 10.1016/j.pharmthera.2022.108113] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
The cAMP-dependent protein kinase (PKA) system represents a primary cell-signaling pathway throughout systems and across species. PKA facilitates the actions of hormones, neurotransmitters and other signaling molecules that bind G-protein coupled receptors (GPCR) to modulate cAMP levels. Through its control of synaptic events, exocytosis, transcriptional regulation, and more, PKA signaling regulates cellular metabolism and emotional and stress responses making it integral in the maintenance and dysregulation of energy homeostasis. Neural PKA signaling is regulated by afferent and peripheral efferent signals that link specific neural cell populations to the regulation of metabolic processes in adipose tissue, liver, pancreas, adrenal, skeletal muscle, and gut. Mouse models have provided invaluable information on the roles for PKA subunits in brain and key metabolic organs. While limited, human studies infer differential regulation of the PKA system in obese compared to lean individuals. Variants identified in PKA subunit genes cause Cushing syndrome that is characterized by metabolic dysregulation associated with endogenous glucocorticoid excess. Under healthy physiologic conditions, the PKA system is exquisitely regulated by stimuli that activate GPCRs to alter intracellular cAMP concentrations, and by PKA cellular localization and holoenzyme stability. Adenylate cyclase activity generates cAMP while phosphodiesterase-mediated cAMP degradation to AMP decreases cAMP levels downstream of GPCRs. Chronic perturbations in PKA signaling appear to be capable of resetting PKA regulation at several levels; in addition, sex differences in PKA signaling regulation, while not well understood, impact the physiologic consequences of metabolic dysregulation and obesity. This review explores the roles for PKA signaling in the pathogenesis of metabolic diseases including obesity, type 2 diabetes mellitus and associated co-morbidities through neural-peripheral crosstalk and cAMP/PKA signaling pathway targets that hold therapeutic potential.
Collapse
Affiliation(s)
- Edra London
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA.
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA; Human Genetics & Precision Medicine, IMBB, Foundation for Research & Technology Hellas, Greece; Research Institute, ELPEN, SA, Athens, Greece
| |
Collapse
|
4
|
Bian T, Ding H, Wang Y, Hu Q, Chen S, Fujioka N, Aly FZ, Lu J, Huo Z, Xing C. OUP accepted manuscript. Carcinogenesis 2022; 43:659-670. [PMID: 35353881 PMCID: PMC9653071 DOI: 10.1093/carcin/bgac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Our earlier work demonstrated varying potency of dihydromethysticin (DHM) as the active kava phytochemical for prophylaxis of tobacco carcinogen nicotine-derived nitrosamine ketone (NNK)-induced mouse lung carcinogenesis. Efficacy was dependent on timing of DHM gavage ahead of NNK insult. In addition to DNA adducts in the lung tissues mitigated by DHM in a time-dependent manner, our in vivo data strongly implicated the existence of DNA damage-independent mechanism(s) in NNK-induced lung carcinogenesis targeted by DHM to fully exert its anti-initiation efficacy. In the present work, RNA seq transcriptomic profiling of NNK-exposed (2 h) lung tissues with/without a DHM (8 h) pretreatment revealed a snap shot of canonical acute phase tissue damage and stress response signaling pathways as well as an activation of protein kinase A (PKA) pathway induced by NNK and the restraining effects of DHM. The activation of the PKA pathway by NNK active metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) at a concentration incapable of promoting DNA adduct was confirmed in a lung cancer cell culture model, potentially through NNAL binding to and activation of the β-adrenergic receptor. Our in vitro and in vivo data overall support the hypothesis that DHM suppresses PKA activation as a key DNA damage-independent mechanistic lead, contributing to its effective prophylaxis of NNK-induced lung carcinogenesis. Systems biology approaches with a detailed temporal dissection of timing of DHM intake versus NNK exposure are warranted to fill the knowledge gaps concerning the DNA damage-driven mechanisms and DNA damage-independent mechanisms to optimize the implementation strategy for DHM to achieve maximal lung cancer chemoprevention.
Collapse
Affiliation(s)
| | | | - Yuzhi Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Qi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Naomi Fujioka
- Department of Medicine, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - F Zahra Aly
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 1345 Center Drive, Gainesville, FL, USA
| | - Junxuan Lu
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Zhiguang Huo
- To whom correspondence should be addressed. Tel: 352-295-8511; Fax: 352-273-9724;
| | - Chengguo Xing
- Correspondence may also be addressed to Zhiguang Huo. Tel: 352-294-5929; Fax: 352-294-5931;
| |
Collapse
|
5
|
A target fishing study to spot possible biological targets of fusaric acid: Inhibition of protein kinase-A and insights on the underpinning mechanisms. Food Chem Toxicol 2021; 159:112663. [PMID: 34748883 DOI: 10.1016/j.fct.2021.112663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022]
Abstract
Fusaric acid is a secondary metabolite produced by various Fusarium fungi, present with relatively high incidence in Fusarium-contaminated foods. It was already described as phytotoxic and cytotoxic. However, the understanding of its molecular mechanisms is still fragmentary and further data are needed to ensure an informed assessment of the risk related to its presence in food. This work applied an integrated in silico/in vitro approach to reveal novel potential biological activities of fusaric acid and to investigate the underpinning mechanisms. An in silico reverse screening was used to identify novel biological targets for fusaric acid. Computational results indicated as target protein kinase-A, which was confirmed with biochemical cell-free assays providing evidence of its actual inhibitory potential. Cell-based experiments on intestinal cells (HCEC-1CT cells) identified the mitochondrial network and cell membranes as potentially affected organelles, possibly resulting from PKA inhibition. The integration of 3D molecular modeling supported the plausibility of fusaric acid-dependent inhibition. From the hazard identification perspective, considering the Low Observed Adverse Effect Level described here (0.1 mM) and the possible level of contamination in food, fusaric acid might raise concern from a food safety standpoint and the gastrointestinal tract was described as a meaningful system to investigate with priority.
Collapse
|
6
|
Expression of Pea3 protein subfamily members in hippocampus and potential regulation following neuronal stimulation. Neurosci Lett 2020; 738:135348. [PMID: 32891673 DOI: 10.1016/j.neulet.2020.135348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Pea3 proteins belong to a subfamily of the E-twentysix (ETS) domain superfamily of transcription factors, which play various roles during development. Polyoma Enhancer-Activator 3 (Pea3) proteins Pea3, ERM and Er81 are particularly involved in tissues with branching morphogenesis, including kidney, lung, mammary gland and nervous system development. A recent transcriptomic study on novel targets of Pea3 transcription factor revealed various axon guidance and nervous system development related targets, supporting a role of Pea3 proteins in motor neuron connectivity, as well as novel targets in signaling pathways involved in synaptic plasticity. This study focuses on the expression of Pea3 family members in hippocampal neurons, and regulation of putative Pea3 targets in Pea3-overexpressing cell lines and following induction of long-term potentiation or seizure in vivo. We show that Pea3 proteins are expressed in hippocampus in both neuronal and non-neuronal cells, and that Pea3 represses Elk-1 but activates Prkca and Nrcam expression in hippocampal cell lines. We also show that mRNA and protein levels of Pea3 family members are differentially regulated in the dentate gyrus and CA1 region upon MECS stimulation, but not upon LTP induction.
Collapse
|
7
|
London E, Bloyd M, Stratakis CA. PKA functions in metabolism and resistance to obesity: lessons from mouse and human studies. J Endocrinol 2020; 246:R51-R64. [PMID: 32485681 PMCID: PMC7385994 DOI: 10.1530/joe-20-0035] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Both direct and indirect evidence demonstrate a central role for the cAMP-dependent protein kinase (PKA) signaling pathway in the regulation of energy balance and metabolism across multiple systems. However, the ubiquitous pattern of PKA expression across cell types poses a challenge in pinpointing its tissue-specific regulatory functions and further characterizing its many downstream effects in certain organs or cells. Mouse models of PKA deficiency and over-expression and studies in living cells have helped clarify PKA function in adipose tissue (AT), liver, adrenal, pancreas, and specific brain nuclei, as they pertain to energy balance and metabolic dysregulation. Limited studies in humans suggest differential regulation of PKA in AT of obese compared to lean individuals and an overall dysregulation of PKA signaling in obesity. Despite its complexity, under normal physiologic conditions, the PKA system is tightly regulated by changes in cAMP concentrations upstream via adenylate cyclase and downstream by phosphodiesterase-mediated cAMP degradation to AMP and by changes in PKA holoenzyme stability. Adjustments in the PKA system appear to be important to the development and maintenance of the obese state and its associated metabolic perturbations. In this review we discuss the important role of PKA in obesity and its involvement in resistance to obesity, through studies in humans and in mouse models, with a focus on the regulation of PKA in energy expenditure, intake behavior, and lipid and glucose metabolism.
Collapse
Affiliation(s)
- Edra London
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Michelle Bloyd
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| |
Collapse
|
8
|
Anxiety-like behavior and other consequences of early life stress in mice with increased protein kinase A activity. Behav Brain Res 2018; 348:22-30. [PMID: 29625227 DOI: 10.1016/j.bbr.2018.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 12/12/2022]
Abstract
Anxiety disorders are associated with abnormalities in fear-learning and bias to threat; early life experiences are influential to the development of an anxiety-like phenotype in adulthood. We recently reported that adult mice (Prkar1a+/-) with haploinsufficiency for the main regulatory subunit of the protein kinase A (PKA) exhibit an anxiety-like phenotype associated with increased PKA activity in the amygdala. PKA is the main effector of cyclic adenosine mono-phosphate signaling, a key pathway involved in the regulation of fear learning. Since anxiety has developmental and genetic components, we sought to examine the interaction of a genetic defect associated with anxiety phenotype and early life experiences. We investigated the effects of neonatal maternal separation or tactile stimulation on measures of behavior typical to adolescence as well as developmental changes in the behavioral phenotype between adolescent and adult wild-type (WT) and Prkar1a+/- mice. Our results showed developmental differences in assays of anxiety and novelty behavior for both genotypes. Adolescent mice showed increased exploratory and novelty seeking behavior compared to adult counterparts. However, early life experiences modulated behavior in adolescent WT differently than in adolescent Prkar1a+/- mice. Adolescent WT mice exposed to early life tactile stimulation showed attenuation of anxiety-like behavior, whereas an increase in exploratory behavior was found in Prkar1a+/- adolescent mice. The finding of behavioral differences that are apparent during adolescence in Prkar1a+/- mice suggests that long-term exposure of the brain to increased PKA activity during critical developmental periods contributes to the anxiety-like phenotype noted in the adult animals with increased PKA activity.
Collapse
|
9
|
Keil MF, Briassoulis G, Stratakis CA, Wu TJ. Protein Kinase A and Anxiety-Related Behaviors: A Mini-Review. Front Endocrinol (Lausanne) 2016; 7:83. [PMID: 27445986 PMCID: PMC4925668 DOI: 10.3389/fendo.2016.00083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/20/2016] [Indexed: 01/13/2023] Open
Abstract
This review focuses on the anxiety related to cyclic AMP/protein kinase A (PKA) signaling pathway that regulates stress responses. PKA regulates an array of diverse signals that interact with various neurotransmitter systems associated with alertness, mood, and acute and social anxiety-like states. Recent mouse studies support the involvement of the PKA pathway in common neuropsychiatric disorders characterized by heightened activation of the amygdala. The amygdala is critical for adaptive responses leading to fear learning and aberrant fear memory and its heightened activation is widely thought to underpin various anxiety disorders. Stress-induced plasticity within the amygdala is involved in the transition from normal vigilance responses to emotional reactivity, fear over-generalization, and deficits in fear inhibition resulting in pathological anxiety and conditions, such as panic and depression. Human studies of PKA signaling defects also report an increased incidence of psychiatric disorders, including anxiety, depression, bipolar disorder, learning disorders, and attention deficit hyperactivity disorder. We speculate that the PKA system is uniquely suited for selective, molecularly targeted intervention that may be proven effective in anxiolytic therapy.
Collapse
Affiliation(s)
- Margaret F. Keil
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- *Correspondence: Margaret F. Keil, ; T. John Wu,
| | - George Briassoulis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Pediatric Intensive Care, University of Crete, Heraklion, Greece
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - T. John Wu
- Department of Obstetrics and Gynecology, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- *Correspondence: Margaret F. Keil, ; T. John Wu,
| |
Collapse
|