1
|
Brimvandi A, Ershad Nedaei S, Pourmotaabed A, Sahveisi K, Abdoli N, Ghazvini H, Khodamoradi M. Methamphetamine and REM sleep deprivation interact to affect behavioral performance in adult and adolescent rats. Brain Res 2024; 1841:149096. [PMID: 38936532 DOI: 10.1016/j.brainres.2024.149096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Drug addiction may result in sleep problems. Importantly, sleep deprivation (SD) is known as an important risk factor for relapse to drug abuse as SD mimics the effects of psychostimulants on dopamine system of the brain. Moreover, aging may affect sleep and drug addiction. This study, therefore, set out to assess the effects of methamphetamine (METH) and REM sleep deprivation (RSD) on locomotor activity, anxiety-like behavior and spatial memory in adult and adolescent rats. Adult and adolescent male Wistar rats received a neurotoxic METH regimen; four subcutaneous injections of 6 mg/kg, at 2 h intervals. Five days later, the animals underwent a 48-h RSD episode using the multiple platforms method. They were then examined using the open field (OF), elevated plus maze (EPM) and Y-maze tasks. We found that the METH and RSD paradigms showed synergistic effects to increase locomotion and risk-taking behavior in both adult and adolescent animals, while only adolescent rats revealed RSD-induced anxiety-like behavior. Moreover, adolescent animals revealed greater sensitization for vertical activity following METH plus RSD episode. In addition, METH and RSD paradigms revealed synergistic effects to impair spatial working memory, but neither METH nor RSD alone affected performance of animals in the Y-maze task. Our findings may indicate that there are important relationships between METH and RSD to induce hyperlocomotion, risk-taking behavior and spatial memory impairment, particularly in adolescent animals. Moreover, it seems that adolescent rats may be more susceptible to anxiety-like behavior and hyperlocomotion than adults.
Collapse
Affiliation(s)
- Aazam Brimvandi
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Pourmotaabed
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kaveh Sahveisi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasrin Abdoli
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Ghazvini
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Khodamoradi
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Adeniyi PA, Adeyelu TT, Shrestha A, Liu CC, Lee CC. Prenatal and postnatal methamphetamine exposure alters prefrontal cortical gene expression and behavior in mice. Front Behav Neurosci 2024; 18:1286872. [PMID: 38505323 PMCID: PMC10949922 DOI: 10.3389/fnbeh.2024.1286872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024] Open
Abstract
Methamphetamine is a highly abused psychostimulant that substantially impacts public health. Prenatal and postnatal methamphetamine exposure alters gene expression, brain development, and behavior in the offspring, although the underlying mechanisms are not fully defined. To assess these adverse outcomes in the offspring, we employed a mouse model of prenatal and postnatal methamphetamine exposure. Juvenile offspring were behaviorally assessed on the open field, novel object recognition, Y-maze, and forced swim tests. In addition, RNA sequencing was used to explore potential alterations in prefrontal cortical gene expression. We found that methamphetamine-exposed mice exhibited decreased locomotor activity and impaired cognitive performance. In addition, differential expression of genes involved in neurotransmission, synaptic plasticity, and neuroinflammation were found with notable changes in dopaminergic signaling pathways. These data suggest potential neural and molecular mechanisms underlying methamphetamine-exposed behavioral changes. The altered expression of genes involved in dopaminergic signaling and synaptic plasticity highlights potential targets for therapeutic interventions for substance abuse disorders and related psychiatric complications.
Collapse
Affiliation(s)
- Philip A. Adeniyi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Tolulope T. Adeyelu
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Amita Shrestha
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Charles C. Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
3
|
Čechová B, Jurčovičová J, Petríková I, Vaculín Š, Šandera Š, Šlamberová R. Impact of altered environment and early postnatal methamphetamine exposure on serotonin levels in the rat hippocampus during adolescence. Lab Anim Res 2024; 40:1. [PMID: 38308379 PMCID: PMC10835812 DOI: 10.1186/s42826-024-00192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Methamphetamine (MA) is a highly abused psychostimulant across all age groups including pregnant women. Because developing brain is vulnerable by the action of drugs, or other noxious stimuli, the aim of our study was to examine the effect of early postnatal administration of MA alone or in combination with enriched environment (EE) and/or stress of separate housing, on the levels of serotonin (5HT) in the hippocampus of male rat pups at three stages of adolescence (postnatal day (PND) 28, 35 and 45). MA (5 mg/kg/ml) was administered subcutaneously (sc) to pups (direct administration), or via mothers' milk between PND1 and PND12 (indirect administration). Controls were exposed saline (SA). Pups were exposed to EE and/or to separation from the weaning till the end of the experiment. RESULTS On PND 28, in sc-treated series, EE significantly increased the muted 5HT in SA pups after separation and restored the pronounced inhibition of 5HT by MA. No beneficial effect of EE was present in pups exposed to combination of MA and separation. 5HT development declined over time; EE, MA and separation had different effects on 5HT relative to adolescence stage. CONCLUSIONS Present study shows that MA along with environment or housing affect 5HT levels, depending on both the age and the method of application (direct or indirect). These findings extend the knowledge on the effects of MA alone and in combination with different housing conditions on the developing brain and highlight the increased sensitivity to MA during the first few months after birth.
Collapse
Affiliation(s)
- Barbora Čechová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Jurčovičová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Petríková
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Šimon Vaculín
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Štěpán Šandera
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
4
|
Gonçalves PFR, Nunes LED, Andrade BDS, Silva MOLD, Souza INDO, Assunção-Miranda I, Castro NG, Neves GA. Age-dependent memory impairment induced by co-exposure to nicotine and a synthetic cannabinoid in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110821. [PMID: 37442332 DOI: 10.1016/j.pnpbp.2023.110821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Co-use of marijuana and tobacco products is the second most common drug combination among adolescents. Nicotine (NIC) and cannabinoid use during adolescence induce similar detrimental changes, raising the hypothesis that simultaneous exposure could result in even more severe outcomes. Thus, we investigated whether the co-exposure to NIC and the synthetic cannabinoid WIN 55,212-2 (WIN) in adolescent mice causes behavioral outcomes different from those observed after exposure to a single drug. Male Swiss mice were exposed twice daily to NIC, WIN, or NIC + WIN during adolescence (PND28-47) or adulthood (PND70-89). Drug combination led to a greater reduction in weight gain in adolescent mice, while NIC-induced weight loss was observed in adults. During administration, NIC provoked hypothermia, and WIN produced hyperlocomotion in adolescent and adult mice. Animals exposed to NIC + WIN presented a profile of changes similar to those exposed to NIC. After drug exposure, changes in locomotion, thigmotaxis, social preference, prepulse inhibition, and working and recognition memory were evaluated. Adolescent but not adult mice exposed to NIC showed withdrawal-related hyperlocomotion unaffected by WIN co-administration. An age-specific impairment in object recognition memory was induced only by drug co-exposure during adolescence, which resolved spontaneously before reaching early adulthood. A transient decrease in hippocampal α7 nAChR subunit and CB1 receptor mRNA levels was induced by NIC exposure, which may be involved but is not enough to explain the memory impairment. Our work confirms the potential of NIC and cannabinoids association to aggravate some of the individual drug effects during critical neurodevelopmental periods.
Collapse
Affiliation(s)
- Patricia Felix Rolo Gonçalves
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Eduardo Duarte Nunes
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Brenda da Silva Andrade
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Isis Nem de Oliveira Souza
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Newton Gonçalves Castro
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilda Angela Neves
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Khani F, Pourmotabbed A, Hosseinmardi N, Nedaei SE, Fathollahi Y, Azizi H. Development of anxiety-like behaviors during adolescence: Persistent effects of adolescent morphine exposure in male rats. Dev Psychobiol 2022; 64:e22315. [PMID: 36282759 DOI: 10.1002/dev.22315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023]
Abstract
Epidemiological studies show the prevalence of opioid use, misuse and abuse in adolescents, which imposes social and economic accountability worldwide. Chronic opioid exposure, especially in adolescents, may have lasting effects on emotional behaviors that persist into adulthood. The current experiments were therefore designed to study the effects of sustained opioid exposure during adolescence on anxiety-like behaviors. Adolescent male Wistar rats underwent increasing doses of morphine for 10 days (PNDs 31-40). After that the open field test (OFT) and elevated plus maze (EPM) test were performed over a 4-week postmorphine treatment from adolescence to adulthood. Moreover, the weight of the animals was measured at these time points. We found that chronic adolescent morphine exposure reduces the weight gain during the period of morphine treatment and 4 weeks after that. It had no significant effect on the locomotor activity in the animals. Moreover, anxiolytic-like behavior was observed in the rats exposed to morphine during adolescence evaluated by OFT and EPM test. Thus, long-term exposure to morphine during adolescence has the profound potential of altering the anxiety-like behavior profile in the period from adolescence to adulthood. The maturation of the nervous system can be affected by drug abuse during the developmental window of adolescence and these effects may lead to behaviorally stable alterations.
Collapse
Affiliation(s)
- Fatemeh Khani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Pourmotabbed
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Liang M, Zhu L, Wang R, Su H, Ma D, Wang H, Chen T. Methamphetamine Exposure in Adolescent Impairs Memory of Mice in Adulthood Accompanied by Changes in Neuroplasticity in the Dorsal Hippocampus. Front Cell Neurosci 2022; 16:892757. [PMID: 35656409 PMCID: PMC9152172 DOI: 10.3389/fncel.2022.892757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/13/2022] [Indexed: 01/14/2023] Open
Abstract
Methamphetamine (METH) has been shown to alter learning and memory by affecting the neuroplasticity of the dorsal hippocampus, a key structure that undergoes extensive remodeling during adolescence. In this study, we investigated whether mid-to-late adolescent exposure to METH leads to long-lasting memory impairment. To do this, adolescents (35–48 postnatal days) were exposed to different doses of METH for 14 days and then evaluated by the Morris water maze (MWM), new object recognition test (NORT), and the Y-maze, to investigate the learning and memory abilities of mice in their adolescence and adulthood, respectively. We also detected the mRNA levels of genes associated with neuroplasticity in the dorsal hippocampus. The synaptic ultrastructure and the number of neurons and astrocytes in the dorsal hippocampus were also determined by transmission electron microscopy (TEM) and immunofluorescence (IF). Exposure to METH in mid-to-late adolescence impaired spatial memory retrieval ability and the long-term recognition memory of mice in their adulthood, but not in their adolescence. Of note, the impairment of memory capacity in adulthood was accompanied by molecular and structural changes in synapses in the dorsal hippocampus. Our results indicate that mice exposed to METH in mid-to-late adolescence have impaired memory ability in their adulthood; this may be the result of abnormal changes in the structural plasticity of the dorsal hippocampus; the causal relationship between changes in synaptic structural plasticity and memory impairment needs to be further confirmed. In summary, our study provides evidence for the detrimental consequences of adolescent addiction and the prevention of adolescent drug abuse.
Collapse
Affiliation(s)
- Min Liang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Li Zhu
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Rui Wang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Hang Su
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Dongliang Ma
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Hongyan Wang
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Teng Chen
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Teng Chen,
| |
Collapse
|
7
|
Phillips TJ, Aldrich SJ. Peri-adolescent exposure to (meth)amphetamine in animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:1-51. [PMID: 34801166 PMCID: PMC9134876 DOI: 10.1016/bs.irn.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Experimentation with psychoactive drugs is often initiated in the peri-adolescent period, but knowledge of differences in the outcomes of peri-adolescent- vs adult-initiated exposure is incomplete. We consider the existing animal research in this area for (meth)amphetamines. Established for a number of phenotypes, is lower sensitivity of peri-adolescents than adults to acute effects of (meth)amphetamines, including neurotoxic effects of binge-level exposure. More variable are data for long-term consequences of peri-adolescent exposure on motivational and cognitive traits. Moreover, investigations often exclude an adult-initiated exposure group critical for answering questions about outcomes unique to peri-adolescent initiation. Despite this, it is clear from the animal research that (meth)amphetamine exposure during the peri-adolescent period, whether self- or other-administered, impacts brain motivational circuitry and cognitive function, and alters adult sensitivity to other drugs and natural rewards. Such consequences occurring in humans have the potential to predispose toward unfortunate and potentially disastrous family, social and livelihood outcomes.
Collapse
Affiliation(s)
- T J Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States; Veterans Affairs Portland Health Care System, Portland, OR, United States.
| | - S J Aldrich
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
8
|
Salmanzadeh H, Ahmadi-Soleimani SM, Pachenari N, Azadi M, Halliwell RF, Rubino T, Azizi H. Adolescent drug exposure: A review of evidence for the development of persistent changes in brain function. Brain Res Bull 2020; 156:105-117. [PMID: 31926303 DOI: 10.1016/j.brainresbull.2020.01.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022]
Abstract
Over the past decade, many studies have indicated that adolescence is a critical period of brain development and maturation. The refinement and maturation of the central nervous system over this prolonged period, however, makes the adolescent brain highly susceptible to perturbations from acute and chronic drug exposure. Here we review the preclinical literature addressing the long-term consequences of adolescent exposure to common recreational drugs and drugs-of-abuse. These studies on adolescent exposure to alcohol, nicotine, opioids, cannabinoids and psychostimulant drugs, such as cocaine and amphetamine, reveal a variety of long-lasting behavioral and neurobiological consequences. These agents can affect development of the prefrontal cortex and mesolimbic dopamine pathways and modify the reward systems, socio-emotional processing and cognition. Other consequences include disruption in working memory, anxiety disorders and an increased risk of subsequent drug abuse in adult life. Although preventive and control policies are a valuable approach to reduce the detrimental effects of drugs-of-abuse on the adolescent brain, a more profound understanding of their neurobiological impact can lead to improved strategies for the treatment and attenuation of the detrimental neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Hamed Salmanzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | | | - Narges Pachenari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Robert F Halliwell
- TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA, Italy
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Struntz KH, Siegel JA. Effects of methamphetamine exposure on anxiety-like behavior in the open field test, corticosterone, and hippocampal tyrosine hydroxylase in adolescent and adult mice. Behav Brain Res 2018; 348:211-218. [DOI: 10.1016/j.bbr.2018.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/09/2018] [Accepted: 04/14/2018] [Indexed: 12/28/2022]
|
10
|
Baker EP, Magnuson EC, Dahly AM, Siegel JA. The effects of enriched environment on the behavioral and corticosterone response to methamphetamine in adolescent and adult mice. Dev Psychobiol 2018; 60:664-673. [PMID: 29738077 DOI: 10.1002/dev.21633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022]
Abstract
Methamphetamine alters behavior and the stress response system. Relatively little research has examined the effects of methamphetamine in adolescents and compared these effects to those in adults. Housing in enriched environments has been explored as one way to protect against the effects of methamphetamine, but the findings are conflicting and no study has examined how enriched environment may alter the behavioral and corticosterone responses to methamphetamine in adolescent and adult rodents. We examined the long-term effects of methamphetamine exposure on anxiety, social behavior, behavioral despair, and corticosterone levels in adolescent and adult mice housed in enriched or isolated environments. Enriched environment did not alter the behavioral or corticosterone response to methamphetamine. Methamphetamine exposure decreased anxiety and increased behavioral despair in adult mice, but methamphetamine did not alter behavior in adolescent mice. There was no effect of methamphetamine on social behavior or corticosterone levels. Our findings demonstrate that the specific environmental enrichment paradigm used in this study was not sufficient to mitigate the behavioral effects of methamphetamine and that adolescent mice are relatively resistant to the effects of methamphetamine compared to adult mice.
Collapse
Affiliation(s)
- Elizabeth P Baker
- Department of Psychology, University of St. Thomas, Saint Paul, Minnesota
| | - Elliott C Magnuson
- Department of Psychology, University of St. Thomas, Saint Paul, Minnesota
| | - Ashley M Dahly
- Department of Psychology, University of St. Thomas, Saint Paul, Minnesota
| | - Jessica A Siegel
- Department of Psychology, University of St. Thomas, Saint Paul, Minnesota
| |
Collapse
|