1
|
Santoni A, Di Dona G, Melcher D, Franchin L, Ronconi L. Atypical oscillatory and aperiodic signatures of visual sampling in developmental dyslexia. Neuroimage Clin 2024; 45:103720. [PMID: 39644559 PMCID: PMC11665574 DOI: 10.1016/j.nicl.2024.103720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Temporal processing deficits in Developmental Dyslexia (DD) have been documented extensively at the behavioral level, leading to the formulation of neural theories positing that such anomalies in parsing multisensory input rely on aberrant synchronization of neural oscillations or to an excessive level of neural noise. Despite reading being primarily supported by visual functions, experimental evidence supporting these theories remains scarce. Here, we tested 26 adults with DD (9 females) and 31 neurotypical controls (16 females) with a temporal segregation/integration task that required participants to either integrate or segregate two rapidly presented displays while their EEG activity was recorded. We confirmed a temporal sampling deficit in DD, which specifically affected the rapid segregation of visual input. While the ongoing alpha frequency and the excitation/inhibition (E/I) ratio (i.e., an index of neural noise quantified by the aperiodic exponent) were differently modulated based on task demands in typical readers, DD participants exhibited an impairment in alpha speed modulation and an altered E/I ratio that affected their rapid visual sampling. Nonetheless, an association between visual temporal sampling accuracy and both alpha frequency and the E/I ratio measured at rest were evident in the DD group, further confirming an anomalous interplay between alpha synchronization, the E/I ratio and active visual sampling. These results provide evidence that both trait- and state-like differences in alpha-band synchronization and neural noise levels coexist in the dyslexic brain and are synergistically responsible for cascade effects on visual sampling and reading.
Collapse
Affiliation(s)
- Alessia Santoni
- School of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giuseppe Di Dona
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - David Melcher
- Psychology Program, Division of Science, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates; Center for Brain and Health, NYUAD Research Institute, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Laura Franchin
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy; Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
2
|
Formoso MA, Ortiz A, Martinez-Murcia FJ, Gallego N, Luque JL. Detecting Phase-Synchrony Connectivity Anomalies in EEG Signals. Application to Dyslexia Diagnosis. SENSORS 2021; 21:s21217061. [PMID: 34770378 PMCID: PMC8588444 DOI: 10.3390/s21217061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/07/2023]
Abstract
Objective Dyslexia diagnosis is a challenging task, since traditional diagnosis methods are not based on biological markers but on behavioural tests. Although dyslexia diagnosis has been addressed by these tests in clinical practice, it is difficult to extract information about the brain processes involved in the different tasks and, then, to go deeper into its biological basis. Thus, the use of biomarkers can contribute not only to the diagnosis but also to a better understanding of specific learning disorders such as dyslexia. In this work, we use Electroencephalography (EEG) signals to discover differences among controls and dyslexic subjects using signal processing and artificial intelligence techniques. Specifically, we measure phase synchronization among channels, to reveal the functional brain network activated during auditory processing. On the other hand, to explore synchronicity patterns risen by low-level auditory processing, we used specific stimuli consisting in band-limited white noise, modulated in amplitude at different frequencies. The differential information contained in the functional (i.e., synchronization) network has been processed by an anomaly detection system that addresses the problem of subjects variability by an outlier-detection method based on vector quantization. The results, obtained for 7 years-old children, show that the proposed method constitutes an useful tool for clinical use, with the area under ROC curve (AUC) values up to 0.95 in differential diagnosis tasks.
Collapse
Affiliation(s)
- Marco A. Formoso
- Communications Engineering Department, University of Málaga, 29071 Málaga, Spain; (M.A.F.); (N.G.)
| | - Andrés Ortiz
- Communications Engineering Department, University of Málaga, 29071 Málaga, Spain; (M.A.F.); (N.G.)
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), 18014 Granada, Spain;
- Correspondence: ; Tel.: +34-952133353
| | - Francisco J. Martinez-Murcia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), 18014 Granada, Spain;
- Department of Signal Theory, Networking and Communications, University of Granada, 18014 Granada, Spain
| | - Nicolás Gallego
- Communications Engineering Department, University of Málaga, 29071 Málaga, Spain; (M.A.F.); (N.G.)
| | - Juan L. Luque
- Department of Basic Psychology, University of Malaga, 29019 Málaga, Spain;
| |
Collapse
|
3
|
Developmental Dyslexia: Environment Matters. Brain Sci 2021; 11:brainsci11060782. [PMID: 34199166 PMCID: PMC8231524 DOI: 10.3390/brainsci11060782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Developmental dyslexia (DD) is a multifactorial, specific learning disorder. Susceptibility genes have been identified, but there is growing evidence that environmental factors, and especially stress, may act as triggering factors that determine an individual's risk of developing DD. In DD, as in most complex phenotypes, the presence of a genetic mutation fails to explain the broad phenotypic spectrum observed. Early life stress has been repeatedly associated with the risk of multifactorial disorders, due to its effects on chromatin regulation, gene expression, HPA axis function and its long-term effects on the systemic stress response. Based on recent evidence, we discuss the potential role of stress on DD occurrence, its putative epigenetic effects on the HPA axis of affected individuals, as well as the necessity of early and appropriate intervention, based on the individual stress-associated (endo)phenotype.
Collapse
|
4
|
The Neurological Basis of Developmental Dyslexia and Related Disorders: A Reappraisal of the Temporal Hypothesis, Twenty Years on. Brain Sci 2021; 11:brainsci11060708. [PMID: 34071786 PMCID: PMC8229928 DOI: 10.3390/brainsci11060708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
In a now-classic article published a couple of decades ago (Brain, 2000; 123: 2373-2399), I proposed an "extended temporal processing deficit hypothesis of dyslexia", suggesting that a deficit in temporal processing could explain not only language-related peculiarities usually noticed in dyslexic children, but also a wider range of symptoms related to impaired processing of time in general. In the present review paper, I will revisit this "historical" hypothesis both in the light of a new clinical perspective, including the central yet poorly explained notion of comorbidity, and also taking a new look at the most recent experimental work, mainly focusing on brain imaging data. First, consistent with daily clinical practice, I propose to distinguish three groups of children who fail to learn to read, of fairly equal occurrence, who share the same initial presentation (difficulty in mastering the rules of grapheme-phoneme correspondence) but with differing associated signs and/or comorbid conditions (language disorders in the first group, attentional deficits in the second one, and motor coordination problems in the last one), thus suggesting, at least in part, potentially different triggering mechanisms. It is then suggested, in the light of brain imaging information available to date, that the three main clinical presentations/associations of cognitive impairments that compromise reading skills acquisition correspond to three distinct patterns of miswiring or "disconnectivity" in specific brain networks which have in common their involvement in the process of learning and their heavy reliance on temporal features of information processing. With reference to the classic temporal processing deficit of dyslexia and to recent evidence of an inability of the dyslexic brain to achieve adequate coupling of oscillatory brain activity to the temporal features of external events, a general model is proposed according to which a common mechanism of temporal uncoupling between various disconnected-and/or mis-wired-processors may account for distinct forms of specific learning disorders, with reading impairment being a more or less constant feature. Finally, the potential therapeutic implications of such a view are considered, with special emphasis on methods seeking to enhance cross-modal connectivity between separate brain systems, including those using rhythmic and musical training in dyslexic patients.
Collapse
|
5
|
Differential contributions of synaptic and intrinsic inhibitory currents to speech segmentation via flexible phase-locking in neural oscillators. PLoS Comput Biol 2021; 17:e1008783. [PMID: 33852573 PMCID: PMC8104450 DOI: 10.1371/journal.pcbi.1008783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/07/2021] [Accepted: 02/05/2021] [Indexed: 01/07/2023] Open
Abstract
Current hypotheses suggest that speech segmentation—the initial division and grouping of the speech stream into candidate phrases, syllables, and phonemes for further linguistic processing—is executed by a hierarchy of oscillators in auditory cortex. Theta (∼3-12 Hz) rhythms play a key role by phase-locking to recurring acoustic features marking syllable boundaries. Reliable synchronization to quasi-rhythmic inputs, whose variable frequency can dip below cortical theta frequencies (down to ∼1 Hz), requires “flexible” theta oscillators whose underlying neuronal mechanisms remain unknown. Using biophysical computational models, we found that the flexibility of phase-locking in neural oscillators depended on the types of hyperpolarizing currents that paced them. Simulated cortical theta oscillators flexibly phase-locked to slow inputs when these inputs caused both (i) spiking and (ii) the subsequent buildup of outward current sufficient to delay further spiking until the next input. The greatest flexibility in phase-locking arose from a synergistic interaction between intrinsic currents that was not replicated by synaptic currents at similar timescales. Flexibility in phase-locking enabled improved entrainment to speech input, optimal at mid-vocalic channels, which in turn supported syllabic-timescale segmentation through identification of vocalic nuclei. Our results suggest that synaptic and intrinsic inhibition contribute to frequency-restricted and -flexible phase-locking in neural oscillators, respectively. Their differential deployment may enable neural oscillators to play diverse roles, from reliable internal clocking to adaptive segmentation of quasi-regular sensory inputs like speech. Oscillatory activity in auditory cortex is believed to play an important role in auditory and speech processing. One suggested function of these rhythms is to divide the speech stream into candidate phonemes, syllables, words, and phrases, to be matched with learned linguistic templates. This requires brain rhythms to flexibly synchronize with regular acoustic features of the speech stream. How neuronal circuits implement this task remains unknown. In this study, we explored the contribution of inhibitory currents to flexible phase-locking in neuronal theta oscillators, believed to perform initial syllabic segmentation. We found that a combination of specific intrinsic inhibitory currents at multiple timescales, present in a large class of cortical neurons, enabled exceptionally flexible phase-locking, which could be used to precisely segment speech by identifying vowels at mid-syllable. This suggests that the cells exhibiting these currents are a key component in the brain’s auditory and speech processing architecture.
Collapse
|
6
|
Neural entrainment to speech and nonspeech in dyslexia: Conceptual replication and extension of previous investigations. Cortex 2021; 137:160-178. [PMID: 33618156 DOI: 10.1016/j.cortex.2020.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/02/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
Whether phonological deficits in developmental dyslexia are associated with impaired neural sampling of auditory information is still under debate. Previous findings suggested that dyslexic participants showed atypical neural entrainment to slow and/or fast temporal modulations in speech, which might affect prosodic/syllabic and phonemic processing respectively. However, the large methodological variations across these studies do not allow us to draw clear conclusions on the nature of the entrainment deficit in dyslexia. Using magnetoencephalography, we measured neural entrainment to nonspeech and speech in both groups. We first aimed to conceptually replicate previous studies on auditory entrainment in dyslexia, using the same measurement methods as in previous studies, and also using new measurement methods (cross-correlation analyses) to better characterize the synchronization between stimulus and brain response. We failed to observe any of the significant group differences that had previously been reported in delta, theta and gamma frequency bands, whether using speech or nonspeech stimuli. However, when analyzing amplitude cross-correlations between noise stimuli and brain responses, we found that control participants showed larger responses than dyslexic participants in the delta range in the right hemisphere and in the gamma range in the left hemisphere. Overall, our results are weakly consistent with the hypothesis that dyslexic individuals show an atypical entrainment to temporal modulations. Our attempt at replicating previously published results highlights the multiple weaknesses of this research area, particularly low statistical power due to small sample size, and the lack of methodological standards inducing considerable heterogeneity of measurement and analysis methods across studies.
Collapse
|
7
|
Kershner JR. An Evolutionary Perspective of Dyslexia, Stress, and Brain Network Homeostasis. Front Hum Neurosci 2021; 14:575546. [PMID: 33551772 PMCID: PMC7859477 DOI: 10.3389/fnhum.2020.575546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Evolution fuels interindividual variability in neuroplasticity, reflected in brain anatomy and functional connectivity of the expanding neocortical regions subserving reading ability. Such variability is orchestrated by an evolutionarily conserved, competitive balance between epigenetic, stress-induced, and cognitive-growth gene expression programs. An evolutionary developmental model of dyslexia, suggests that prenatal and childhood subclinical stress becomes a risk factor for dyslexia when physiological adaptations to stress promoting adaptive fitness, may attenuate neuroplasticity in the brain regions recruited for reading. Stress has the potential to blunt the cognitive-growth functions of the predominantly right hemisphere Ventral and Dorsal attention networks, which are primed with high entropic levels of synaptic plasticity, and are critical for acquiring beginning reading skills. The attentional networks, in collaboration with the stress-responsive Default Mode network, modulate the entrainment and processing of the low frequency auditory oscillations (1-8 Hz) and visuospatial orienting linked etiologically to dyslexia. Thus, dyslexia may result from positive, but costly adaptations to stress system dysregulation: protective measures that reset the stress/growth balance of processing to favor the Default Mode network, compromising development of the attentional networks. Such a normal-variability conceptualization of dyslexia is at odds with the frequent assumption that dyslexia results from a neurological abnormality. To put the normal-variability model in the broader perspective of the state of the field, a traditional evolutionary account of dyslexia is presented to stimulate discussion of the scientific merits of the two approaches.
Collapse
Affiliation(s)
- John R. Kershner
- Department of Applied Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Lizarazu M, Lallier M, Bourguignon M, Carreiras M, Molinaro N. Impaired neural response to speech edges in dyslexia. Cortex 2020; 135:207-218. [PMID: 33387899 DOI: 10.1016/j.cortex.2020.09.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/16/2020] [Accepted: 09/16/2020] [Indexed: 12/01/2022]
Abstract
Speech comprehension has been proposed to critically rely on oscillatory cortical tracking, that is, phase alignment of neural oscillations to the slow temporal modulations (envelope) of speech. Speech-brain entrainment is readjusted over time as transient events (edges) in speech lead to speech-brain phase realignment. Auditory behavioral research suggests that phonological deficits in dyslexia are linked to difficulty in discriminating speech edges. Importantly, research to date has not specifically examined neural responses to speech edges in dyslexia. In the present study, we used MEG to record brain activity from normal and dyslexic readers while they listened to speech. We computed phase locking values (PLVs) to evaluate phase entrainment between neural oscillations and the speech envelope time-locked to edge onsets. In both groups, we observed that edge onsets induced phase resets in the auditory oscillations tracking speech, thereby enhancing their entrainment to speech. Importantly, dyslexic readers showed weaker PLVs compared to normal readers in left auditory regions from ~.15 sec to ~.65 sec after edge onset. Our results indicate that the neural mechanism that adapts cortical entrainment to the speech envelope is impaired in dyslexia. These findings here are consistent with the temporal sampling theory of developmental dyslexia.
Collapse
Affiliation(s)
- Mikel Lizarazu
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain; LSCP, Département d'études Cognitives, ENS, EHESS, CNRS, PSL Research University, 75005, Paris, France.
| | - Marie Lallier
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain
| | - Mathieu Bourguignon
- Laboratoire de Cartographie Fonctionnelle du Cerveau, Hopital Erasme, Universite Libre de Bruxelles, Brussels, Belgium
| | - Manuel Carreiras
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Nicola Molinaro
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
9
|
Archer K, Pammer K, Vidyasagar TR. A Temporal Sampling Basis for Visual Processing in Developmental Dyslexia. Front Hum Neurosci 2020; 14:213. [PMID: 32733217 PMCID: PMC7360833 DOI: 10.3389/fnhum.2020.00213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/11/2020] [Indexed: 11/24/2022] Open
Abstract
Knowledge of oscillatory entrainment and its fundamental role in cognitive and behavioral processing has increasingly been applied to research in the field of reading and developmental dyslexia. Growing evidence indicates that oscillatory entrainment to theta frequency spoken language in the auditory domain, along with cross-frequency theta-gamma coupling, support phonological processing (i.e., cognitive encoding of linguistic knowledge gathered from speech) which is required for reading. This theory is called the temporal sampling framework (TSF) and can extend to developmental dyslexia, such that inadequate temporal sampling of speech-sounds in people with dyslexia results in poor theta oscillatory entrainment in the auditory domain, and thus a phonological processing deficit which hinders reading ability. We suggest that inadequate theta oscillations in the visual domain might account for the many magno-dorsal processing, oculomotor control and visual deficits seen in developmental dyslexia. We propose two possible models of a magno-dorsal visual correlate to the auditory TSF: (1) A direct correlate that involves "bottom-up" magnocellular oscillatory entrainment of the visual domain that occurs when magnocellular populations phase lock to theta frequency fixations during reading and (2) an inverse correlate whereby attending to text triggers "top-down" low gamma signals from higher-order visual processing areas, thereby organizing magnocellular populations to synchronize to a theta frequency to drive the temporal control of oculomotor movements and capturing of letter images at a higher frequency.
Collapse
Affiliation(s)
- Kim Archer
- Applied Psychology and Human Factors Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| | - Kristen Pammer
- Applied Psychology and Human Factors Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| | - Trichur Raman Vidyasagar
- Visual and Cognitive Neuroscience Laboratory, Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
10
|
Ortiz A, Martinez-Murcia FJ, Luque JL, Giménez A, Morales-Ortega R, Ortega J. Dyslexia Diagnosis by EEG Temporal and Spectral Descriptors: An Anomaly Detection Approach. Int J Neural Syst 2020; 30:2050029. [PMID: 32496139 DOI: 10.1142/s012906572050029x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Diagnosis of learning difficulties is a challenging goal. There are huge number of factors involved in the evaluation procedure that present high variance among the population with the same difficulty. Diagnosis is usually performed by scoring subjects according to results obtained in different neuropsychological (performance-based) tests specifically designed to this end. One of the most frequent disorders is developmental dyslexia (DD), a specific difficulty in the acquisition of reading skills not related to mental age or inadequate schooling. Its prevalence is estimated between 5% and 12% of the population. Traditional tests for DD diagnosis aim to measure different behavioral variables involved in the reading process. In this paper, we propose a diagnostic method not based on behavioral variables but on involuntary neurophysiological responses to different auditory stimuli. The experiments performed use electroencephalography (EEG) signals to analyze the temporal behavior and the spectral content of the signal acquired from each electrode to extract relevant (temporal and spectral) features. Moreover, the relationship of the features extracted among electrodes allows to infer a connectivity-like model showing brain areas that process auditory stimuli in a synchronized way. Then an anomaly detection system based on the reconstruction residuals of an autoencoder using these features has been proposed. Hence, classification is performed by the proposed system based on the differences in the resulting connectivity models that have demonstrated to be a useful tool for differential diagnosis of DD as well as a method to step towards gaining a better knowledge of the brain processes involved in DD. The results corroborate that nonspeech stimulus modulated at specific frequencies related to the sampling processes developed in the brain to capture rhymes, syllables and phonemes produces effects in specific frequency bands that differentiate between controls and DD subjects. The proposed method showed relatively high sensitivity above 0.6, and up to 0.9 in some of the experiments.
Collapse
Affiliation(s)
- Andrés Ortiz
- Department of Communications Engineering, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain.,Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, C/Periodista Daniel Saucedo Aranda s/n, 18071 Granada, Spain
| | - Francisco J Martinez-Murcia
- Department of Communications Engineering, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain.,Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, C/Periodista Daniel Saucedo Aranda s/n, 18071 Granada, Spain
| | - Juan L Luque
- Department of Developmental and Educational Psychology, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Almudena Giménez
- Department of Basic Psychology, Faculty of Psychology, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Roberto Morales-Ortega
- Department of Computer Architecture and Technology, University of Granada, Periodista Daniel Saucedo Aranda, 18071 Granada, Spain
| | - Julio Ortega
- Department of Computer Architecture and Technology, University of Granada, Periodista Daniel Saucedo Aranda, 18071 Granada, Spain
| |
Collapse
|
11
|
Resting-state EEG reveals global network deficiency in dyslexic children. Neuropsychologia 2020; 138:107343. [DOI: 10.1016/j.neuropsychologia.2020.107343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/01/2020] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
|
12
|
Benítez-Burraco A, Murphy E. Why Brain Oscillations Are Improving Our Understanding of Language. Front Behav Neurosci 2019; 13:190. [PMID: 31551725 PMCID: PMC6736581 DOI: 10.3389/fnbeh.2019.00190] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
We explore the potential that brain oscillations have for improving our understanding of how language develops, is processed in the brain, and initially evolved in our species. The different synchronization patterns of brain rhythms can account for different perceptual and cognitive functions, and we argue that this includes language. We aim to address six distinct questions-the What, How, Where, Who, Why, and When questions-pertaining to oscillatory investigations of language. Language deficits found in clinical conditions like autism, schizophrenia and dyslexia can be satisfactorily construed in terms of an abnormal, disorder-specific pattern of brain rhythmicity. Lastly, an eco-evo-devo approach to language is defended with explicit reference to brain oscillations, embracing a framework that considers language evolution to be the result of a changing environment surrounding developmental paths of the primate brain.
Collapse
Affiliation(s)
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom
| |
Collapse
|
13
|
Murphy E, Benítez-Burraco A. Toward the Language Oscillogenome. Front Psychol 2018; 9:1999. [PMID: 30405489 PMCID: PMC6206218 DOI: 10.3389/fpsyg.2018.01999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Language has been argued to arise, both ontogenetically and phylogenetically, from specific patterns of brain wiring. We argue that it can further be shown that core features of language processing emerge from particular phasal and cross-frequency coupling properties of neural oscillations; what has been referred to as the language ‘oscillome.’ It is expected that basic aspects of the language oscillome result from genetic guidance, what we will here call the language ‘oscillogenome,’ for which we will put forward a list of candidate genes. We have considered genes for altered brain rhythmicity in conditions involving language deficits: autism spectrum disorders, schizophrenia, specific language impairment and dyslexia. These selected genes map on to aspects of brain function, particularly on to neurotransmitter function. We stress that caution should be adopted in the construction of any oscillogenome, given the range of potential roles particular localized frequency bands have in cognition. Our aim is to propose a set of genome-to-language linking hypotheses that, given testing, would grant explanatory power to brain rhythms with respect to language processing and evolution.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.,Department of Psychology, University of Westminster, London, United Kingdom
| | - Antonio Benítez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory, University of Seville, Seville, Spain
| |
Collapse
|