1
|
Paracetamol-Induced Hypothermia in Rodents: A Review on Pharmacodynamics. Processes (Basel) 2022. [DOI: 10.3390/pr10040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Paracetamol can induce hypothermia in humans and rodents. The study’s aim is to review the mechanisms of paracetamol-induced hypothermia in rodents or the results issued from in vitro studies on the same species’ tissues (in doses that do not produce hepatic impairment) using the latest developments published in scientific journals over the last 15 years. Available human studies are also analysed. An extensive search in PubMed databases exploring the hypothermic response to paracetamol was conducted. 4669 articles about paracetamol’s effects on body temperature in mice or rats were found. After applying additional filters, 20 articles were selected for review, with 9 of them presented in tabular forms. The analysis of these articles found that the hypothermic effect of paracetamol is due to the inhibition of a cyclooxygenase-1 variant, is potentiated by endothelin receptor antagonists, and can be mediated through GABAA receptors and possibly through transient receptor potential cation channel subfamily A member 1 via N-acetyl-p-benzoquinone imine in the central nervous system. Human studies confirm the in vivo and in vitro experiments in rodents regarding the presence of a hypothermic effect after high, non-toxic doses of paracetamol. Further research is required to understand the mechanisms behind paracetamol’s hypothermic effect in humans.
Collapse
|
2
|
László BR, Hormay E, Szabó I, Mintál K, Nagy B, László K, Péczely L, Ollmann T, Lénárd L, Karádi Z. Disturbance of taste reactivity and other behavioral alterations after bilateral interleukin-1β microinjection into the cingulate cortex of the rat. Behav Brain Res 2020; 383:112537. [PMID: 32032742 DOI: 10.1016/j.bbr.2020.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 11/26/2022]
Abstract
The anterior cingulate cortex (ACC), is known to be intimately involved in food-related motivational processes and their behavioral organization, primarily by evaluating hedonic properties of the relevant stimuli. In the present study, the involvement of cingulate cortical interleukin-1β (IL-1β) mediated mechanisms in a) gustation associated facial and somato-motor behavioral patterns of Wistar rats were examined in taste reactivity test (TR). In addition, b) conditioned taste aversion (CTA) paradigm was performed to investigate the role of these cytokine mechanisms in taste sensation associated learning processes, c) the general locomotor activity of the animals was observed in open field test (OPF), and d) the potentially negative reinforcing effect of IL-1β was examined in conditioned place preference test (CPP). During the TR test, species specific behavioral patterns in response to the five basic tastes were analyzed. Response rates of ingestive and aversive patterns of the cytokine treated and the control groups differed significantly in case of the weaker bitter (QHCl, 0.03 mM), and the stronger umami (MSG, 0.5 M) tastes. IL-1β itself did not elicit CTA, it did not interfere with the acquisition of LiCl induced CTA, and it also failed to cause place preference or aversion in the CPP test. In the OPF paradigm, however, significant differences were found between the cytokine treated and the control groups in the rearing and grooming, the number of crossings, and in the distance moved. Our results indicate the involvement of cingulate cortical IL-1β mechanisms in the control of taste perception and other relevant behavioral processes.
Collapse
Affiliation(s)
- Bettina Réka László
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| | - Edina Hormay
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - István Szabó
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kitti Mintál
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Bernadett Nagy
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
3
|
Hormay E, László B, Szabó I, Ollmann T, Nagy B, Péczely L, Mintál K, Karádi Z. The effect of loss of the glucose-monitoring neurons in the anterior cingulate cortex: Physiologic challenges induce complex feeding-metabolic alterations after local streptozotocin microinjection in rats. Neurosci Res 2019; 149:50-60. [PMID: 30685493 DOI: 10.1016/j.neures.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
The anterior cingulate cortex (ACC) is interrelated to limbic structures, parts of the central glucose-monitoring (GM) network. GM neurons, postulated to exist here, are hypothesised to participate in regulatory functions, such as the central control of feeding and metabolism. In the present experiments, GM neurons were identified and examined in the ACC by means of the multibarreled microelectrophoretic technique. After bilateral ACC microinjection of streptozotocin (STZ), glucose tolerance tests (GTTs), and determination of relevant plasma metabolite concentrations were performed. Body weights were measured at regular time points during the GTT experiment. Ten percent of the neurons - 30 of 282 recorded cells - responded to the administration of D-glucose, thus, declared to be the GM units. The peak values and dynamics of the GTT blood glucose curves, the plasma metabolite concentrations, and the weight gain were pathologically altered in the STZ treated animals. Our recording experiments revealed the existence of GM neurons in the anterior cingulate cortex. STZ induced selective destruction of these chemosensory cells resulted in feeding and metabolic alterations. The present findings indicate distinguished significance of the cingulate cortical GM neurons in adaptive processes of maintenance of the homeostatic balance.
Collapse
Affiliation(s)
- Edina Hormay
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Neuroscience Centre, Pécs University, Pécs, Hungary.
| | - Bettina László
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Neuroscience Centre, Pécs University, Pécs, Hungary
| | - István Szabó
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Neuroscience Centre, Pécs University, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Neuroscience Centre, Pécs University, Pécs, Hungary
| | - Bernadett Nagy
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Neuroscience Centre, Pécs University, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Neuroscience Centre, Pécs University, Pécs, Hungary
| | - Kitti Mintál
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Neuroscience Centre, Pécs University, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Neuroscience Centre, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Center, Pécs University, Pécs, Hungary
| |
Collapse
|
4
|
Csetényi B, Karádi Z. Homeostatic significance of interleukin-1β in the cingulate cortex. Temperature (Austin) 2018; 5:106-108. [PMID: 30377631 DOI: 10.1080/23328940.2017.1420999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Bettina Csetényi
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Szigeti út 12.,Neuroscience Centre, Szentágothai János Research Centre, University of Pécs, H-7624 Pécs, Ifjúság út 20
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Szigeti út 12.,Neuroscience Centre, Szentágothai János Research Centre, University of Pécs, H-7624 Pécs, Ifjúság út 20
| |
Collapse
|