1
|
Jiang J, Xu L, Zhuang Y, Wei X, Zhang Z, Zhao W, Wang Q, Ye X, Gu J, Cao C, Sun J, He K, Zhang Z, Wang Q, Pan Y, Wang Z. MeHA: A Computational Framework in Revealing the Genetic Basis of Animal Mental Health Traits Under an Intensive Farming System-A Case Study in Pigs. BIOLOGY 2024; 13:843. [PMID: 39452151 PMCID: PMC11504952 DOI: 10.3390/biology13100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Intensively farmed animals such as pigs inevitably experience a certain degree of psychological stress, which leads to a reduction in production performance. Mental health traits are currently difficult to measure, resulting in a gap in understanding their genetic basis. To address this challenge, we propose a computational framework called mental health of animals (MeHA), capable of revealing genes related to animal mental health traits. Using MeHA, we identified 109 candidate genes associated with pig mental health and discovered their intricate connections with critical functions, such as memory, cognition, and neural development, which are essential components of mental health and cognitive performance. Importantly, our findings provide evidence of the potential impact of these genes on economically important traits, including meat quality and piglet survival. This research underscores the importance of genetic studies in enhancing our understanding of animal behavior and cognition, as well as promoting agricultural practices. By applying our approach to study the genetic basis of mental health in pigs as a case, we confirmed that our framework is an effective way to reveal genetic factors affecting animal mental health traits, which contributes to animal welfare and has potential implications for understanding human mental disorders.
Collapse
Affiliation(s)
- Jinyun Jiang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Lingyao Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Yizheng Zhuang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Xingyu Wei
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Zhenyang Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Wei Zhao
- SciGene Biotechnology Co., Ltd., Hefei 230031, China;
| | - Qingyu Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Xiaowei Ye
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Jiamin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Caiyun Cao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Jiabao Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, China;
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Zhe Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yuchun Pan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| |
Collapse
|
2
|
Madsen O, Rikkers RSC, Wells JM, Bergsma R, Kar SK, Taverne N, Taverne-Thiele AJ, Ellen ED, Woelders H. Transcriptomic analysis of intestinal organoids, derived from pigs divergent in feed efficiency, and their response to Escherichia coli. BMC Genomics 2024; 25:173. [PMID: 38350904 PMCID: PMC10863143 DOI: 10.1186/s12864-024-10064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND There is increasing interest in using intestinal organoids to study complex traits like feed efficiency (FE) and host-microbe interactions. The aim of this study was to investigate differences in the molecular phenotype of organoids derived from pigs divergent for FE as well as their responses to challenge with adherent and invasive Escherichia coli (E. coli). RESULTS Colon and ileum tissue from low and high FE pigs was used to generate 3D organoids and two dimensional (2D) monolayers of organoid cells for E. coli challenge. Genome-wide gene expression was used to investigate molecular differences between pigs that were phenotypically divergent for FE and to study the difference in gene expression after challenge with E. coli. We showed, (1) minor differences in gene expression of colon organoids from pigs with low and high FE phenotypes, (2) that an E. coli challenge results in a strong innate immune gene response in both colon and ileum organoids, (3) that the immune response seems to be less pronounced in the colon organoids of high FE pigs and (4) a slightly stronger immune response was observed in ileum than in colon organoids. CONCLUSIONS These findings demonstrate the potential for using organoids to gain insights into complex biological mechanisms such as FE.
Collapse
Affiliation(s)
- Ole Madsen
- Animal Breeding & Genomics, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, the Netherlands.
| | - Roxann S C Rikkers
- Animal Breeding & Genomics, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, the Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, the Netherlands
| | - Rob Bergsma
- Topigs Norsvin, Schoenaker 6, 6641 SZ, Beuningen, the Netherlands
| | - Soumya K Kar
- Animal Nutrition, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, the Netherlands
| | - Nico Taverne
- Host-Microbe Interactomics, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, the Netherlands
| | - Anja J Taverne-Thiele
- Host-Microbe Interactomics, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, the Netherlands
| | - Esther D Ellen
- Animal Breeding & Genomics, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, the Netherlands
| | - Henri Woelders
- Animal Breeding & Genomics, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, the Netherlands
| |
Collapse
|
3
|
Shih BB, Brown SM, Barrington J, Lefevre L, Mabbott NA, Priller J, Thompson G, Lawrence AB, McColl BW. Defining the pig microglial transcriptome reveals its core signature, regional heterogeneity, and similarity with human and rodent microglia. Glia 2023; 71:334-349. [PMID: 36120803 PMCID: PMC10087207 DOI: 10.1002/glia.24274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022]
Abstract
Microglia play key roles in brain homeostasis as well as responses to neurodegeneration and neuroinflammatory processes caused by physical disease and psychosocial stress. The pig is a physiologically relevant model species for studying human neurological disorders, many of which are associated with microglial dysfunction. Furthermore, pigs are an important agricultural species, and there is a need to understand how microglial function affects their welfare. As a basis for improved understanding to enhance biomedical and agricultural research, we sought to characterize pig microglial identity at genome-wide scale and conduct inter-species comparisons. We isolated pig hippocampal tissue and microglia from frontal cortex, hippocampus, and cerebellum, as well as alveolar macrophages from the lungs and conducted RNA-sequencing (RNAseq). By comparing the transcriptomic profiles between microglia, macrophages, and hippocampal tissue, we derived a set of 239 highly enriched genes defining the porcine core microglial signature. We found brain regional heterogeneity based on 150 genes showing significant (adjusted p < 0.01) regional variations and that cerebellar microglia were most distinct. We compared normalized gene expression for microglia from human, mice and pigs using microglia signature gene lists derived from each species and demonstrated that a core microglial marker gene signature is conserved across species, but that species-specific expression subsets also exist. Our data provide a valuable resource defining the pig microglial transcriptome signature that validates and highlights pigs as a useful large animal species bridging between rodents and humans in which to study the role of microglia during homeostasis and disease.
Collapse
Affiliation(s)
- Barbara B Shih
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Sarah M Brown
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Jack Barrington
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh Medical School, The Chancellor's Building, Edinburgh, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Lucas Lefevre
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh Medical School, The Chancellor's Building, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Neil A Mabbott
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Josef Priller
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh Medical School, The Chancellor's Building, Edinburgh, UK.,Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,DZNE, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gerard Thompson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Alistair B Lawrence
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.,Scotland's Rural College (SRUC), Edinburgh, UK
| | - Barry W McColl
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh Medical School, The Chancellor's Building, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Changes in Stereotypies: Effects over Time and over Generations. Animals (Basel) 2022; 12:ani12192504. [PMID: 36230246 PMCID: PMC9559266 DOI: 10.3390/ani12192504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Herein, we propose that there should be discussion about the function and effects of stereotypies in relation to the time during which they are shown. In the first stages, stereotypies may help animals deal with challenges. However, behavior can potentially alter the brain, impairing its function due the absence of a diverse repertory, and change brain connections, neurophysiology and later neuroanatomy. The neuroanatomical changes in individuals showing stereotypies could be an effect rather than a cause of the stereotypy. As a consequence, studies showing different outcomes for animal welfare from stereotypy expression could be due to variation in a timeline of expression. Stereotypies are widely used as an animal welfare indicator, and their expression can tell us about psychological states. However, there are questions about the longer-term consequences if animals express stereotypies: do the stereotypies help in coping? During the prenatal period, stereotypic behavior expressed by the mother can change the phenotype of the offspring, especially regarding emotionality, one mechanism acting via methylation in the limbic system in the brain. Are individuals that show stereotypies for shorter or longer periods all better adjusted, and hence have better welfare, or is the later welfare of some worse than that of individuals that do not show the behavior? Abstract Stereotypies comprise a wide range of repeated and apparently functionless behaviors that develop in individuals whose neural condition or environment results in poor welfare. While stereotypies are an indicator of poor welfare at the time of occurrence, they may have various consequences. Environmental enrichment modifies causal factors and reduces the occurrence of stereotypies, providing evidence that stereotypies are an indicator of poor welfare. However, stereotypy occurrence and consequences change over time. Furthermore, there are complex direct and epigenetic effects when mother mammals that are kept in negative conditions do or do not show stereotypies. It is proposed that, when trying to deal with challenging situations, stereotypies might initially help animals to cope. After further time in the conditions, the performance of the stereotypy may impair brain function and change brain connections, neurophysiology and eventually neuroanatomy. It is possible that reported neuroanatomical changes are an effect of the stereotypy rather than a cause.
Collapse
|
5
|
Enriched Environment Effects on Myelination of the Central Nervous System: Role of Glial Cells. Neural Plast 2022; 2022:5766993. [PMID: 35465398 PMCID: PMC9023233 DOI: 10.1155/2022/5766993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Myelination is regulated by various glial cells in the central nervous system (CNS), including oligodendrocytes (OLs), microglia, and astrocytes. Myelination of the CNS requires the generation of functionally mature OLs from OPCs. OLs are the myelin-forming cells in the CNS. Microglia play both beneficial and detrimental roles during myelin damage and repair. Astrocyte is responsible for myelin formation and regeneration by direct interaction with oligodendrocyte lineage cells. These glial cells are influenced by experience-dependent activities such as environmental enrichment (EE). To date, there are few studies that have investigated the association between EE and glial cells. EE with a complex combination of sensorimotor, cognitive, and social stimulation has a significant effect on cognitive impairment and brain plasticity. Hence, one mechanism through EE improving cognitive function may rely on the mutual effect of EE and glial cells. The purpose of this paper is to review recent research into the efficacy of EE for myelination and glial cells at cellular and molecular levels and offers critical insights for future research directions of EE and the treatment of EE in cognitive impairment disease.
Collapse
|
6
|
Augusto-Oliveira M, Verkhratsky A. Lifestyle-dependent microglial plasticity: training the brain guardians. Biol Direct 2021; 16:12. [PMID: 34353376 PMCID: PMC8340437 DOI: 10.1186/s13062-021-00297-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Lifestyle is one of the most powerful instruments shaping mankind; the lifestyle includes many aspects of interactions with the environment, from nourishment and education to physical activity and quality of sleep. All these factors taken in complex affect neuroplasticity and define brain performance and cognitive longevity. In particular, physical exercise, exposure to enriched environment and dieting act through complex modifications of microglial cells, which change their phenotype and modulate their functional activity thus translating lifestyle events into remodelling of brain homoeostasis and reshaping neural networks ultimately enhancing neuroprotection and cognitive longevity.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, 66075-110, Brazil.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain. .,Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| |
Collapse
|
7
|
Ji W, Bi Y, Cheng Z, Liu R, Zhang X, Shu Y, Li X, Bao J, Liu H. Impact of early socialization environment on social behavior, physiology and growth performance of weaned piglets. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Alexander R, Aragón OR, Bookwala J, Cherbuin N, Gatt JM, Kahrilas IJ, Kästner N, Lawrence A, Lowe L, Morrison RG, Mueller SC, Nusslock R, Papadelis C, Polnaszek KL, Helene Richter S, Silton RL, Styliadis C. The neuroscience of positive emotions and affect: Implications for cultivating happiness and wellbeing. Neurosci Biobehav Rev 2021; 121:220-249. [PMID: 33307046 DOI: 10.1016/j.neubiorev.2020.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 11/10/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
This review paper provides an integrative account regarding neurophysiological correlates of positive emotions and affect that cumulatively contribute to the scaffolding for happiness and wellbeing in humans and other animals. This paper reviews the associations among neurotransmitters, hormones, brain networks, and cognitive functions in the context of positive emotions and affect. Consideration of lifespan developmental perspectives are incorporated, and we also examine the impact of healthy social relationships and environmental contexts on the modulation of positive emotions and affect. The neurophysiological processes that implement positive emotions are dynamic and modifiable, and meditative practices as well as flow states that change patterns of brain function and ultimately support wellbeing are also discussed. This review is part of "The Human Affectome Project" (http://neuroqualia.org/background.php), and in order to advance a primary aim of the Human Affectome Project, we also reviewed relevant linguistic dimensions and terminology that characterizes positive emotions and wellbeing. These linguistic dimensions are discussed within the context of the neuroscience literature with the overarching goal of generating novel recommendations for advancing neuroscience research on positive emotions and wellbeing.
Collapse
Affiliation(s)
- Rebecca Alexander
- Neuroscience Research Australia, Randwick, Sydney, NSW, 2031, Australia; Australian National University, Canberra, ACT, 2601, Australia
| | - Oriana R Aragón
- Yale University, 2 Hillhouse Ave, New Haven, CT, 06520, USA; Clemson University, 252 Sirrine Hall, Clemson, SC, 29634, USA
| | - Jamila Bookwala
- Department of Psychology and Program in Aging Studies, Lafayette College, 730 High Road, Easton, PA, USA
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health, and Wellbeing, Australian National University, Canberra, ACT, 2601, Australia
| | - Justine M Gatt
- Neuroscience Research Australia, Randwick, Sydney, NSW, 2031, Australia; School of Psychology, University of New South Wales, Randwick, Sydney, NSW, 2031, Australia
| | - Ian J Kahrilas
- Department of Psychology, Loyola University Chicago, 1032 W. Sheridan Road, Chicago, IL, 60660, USA
| | - Niklas Kästner
- Department of Behavioural Biology, University of Münster, Badestraße 13, 48149, Münster, Germany
| | - Alistair Lawrence
- Scotland's Rural College, King's Buildings, Edinburgh, EH9 3JG, United Kingdom; The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, United Kingdom
| | - Leroy Lowe
- Neuroqualia (NGO), Truro, NS, B2N 1X5, Canada
| | - Robert G Morrison
- Department of Psychology, Loyola University Chicago, 1032 W. Sheridan Road, Chicago, IL, 60660, USA
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium; Department of Personality, Psychological Assessment and Treatment, University of Deusto, Bilbao, Spain
| | - Robin Nusslock
- Department of Psychology and Institute for Policy Research, Northwestern University, 2029 Sheridan Road, Evanston, IL, 60208, USA
| | - Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, 1500 Cooper St, Fort Worth, TX, 76104, USA; Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelly L Polnaszek
- Department of Psychology, Loyola University Chicago, 1032 W. Sheridan Road, Chicago, IL, 60660, USA
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestraße 13, 48149, Münster, Germany
| | - Rebecca L Silton
- Department of Psychology, Loyola University Chicago, 1032 W. Sheridan Road, Chicago, IL, 60660, USA; Institute for Innovations in Developmental Sciences, Northwestern University, 633 N. Saint Clair, Chicago, IL, 60611, USA.
| | - Charis Styliadis
- Neuroscience of Cognition and Affection group, Lab of Medical Physics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
9
|
Pritchett-Corning KR. Environmental Complexity and Research Outcomes. ILAR J 2020; 60:239-251. [PMID: 32559304 DOI: 10.1093/ilar/ilaa007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/14/2022] Open
Abstract
Environmental complexity is an experimental paradigm as well as a potential part of animals' everyday housing experiences. In experimental uses, researchers add complexity to stimulate brain development, delay degenerative brain changes, elicit more naturalistic behaviors, and test learning and memory. Complexity can exacerbate or mitigate behavioral problems, give animals a sense of control, and allow for expression of highly driven, species-typical behaviors that can improve animal welfare. Complex environments should be designed thoughtfully with the animal's natural behaviors in mind, reported faithfully in the literature, and evaluated carefully for unexpected effects.
Collapse
Affiliation(s)
- Kathleen R Pritchett-Corning
- Office of Animal Resources, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
10
|
Luo L, Reimert I, Middelkoop A, Kemp B, Bolhuis JE. Effects of Early and Current Environmental Enrichment on Behavior and Growth in Pigs. Front Vet Sci 2020; 7:268. [PMID: 32582773 PMCID: PMC7287207 DOI: 10.3389/fvets.2020.00268] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Enriched environments are known to beneficially affect the behavior of pigs, as compared with barren pens. The influence of enrichment may, however, depend on pigs' early life housing experiences. The aim of this study was to investigate the long-term effects of early and later life environmental enrichment on behavior and growth in pigs with different coping styles. Pigs were housed in either barren pens or in larger pens enriched with rooting substrates from birth, and half of them experienced a housing switch, i.e., a loss or gain of enrichment, at 7 weeks of age, creating four treatment groups. Home pen behavior and body weight were recorded until 19 weeks of age. Pigs were classified as reactive or proactive based on a backtest at 2 weeks of age. Enrichment increased time spent exploring, chewing, and play and decreased oral manipulation of penmates and pen-directed exploring and chewing. Behavior of pigs that switched from barren to enriched pens or vice versa reflected not only their actual environment, but also their early life housing. As early and later life enrichment affected most behaviors in opposite directions, effects of enrichment, or lack thereof, after the switch were more pronounced in pigs that had experienced a different early life condition. For instance, pigs experiencing an upgrade from barren to enriched pens seemed to "catch-up" by showing more exploration and play. Conversely, pigs exposed to a downgrade displayed more oral manipulation of penmates than ones kept barren throughout, which particularly held for pigs with a reactive coping style. Effects of early life and current housing on several other behaviors depended on coping style too. Pigs housed in enriched conditions appeared better able to cope with weaning than barren housed pigs, as they gained more weight and had higher feed intake post-weaning. Barren housed pigs had a lower body weight than enriched pigs just before the switch, after which growth was mainly determined by actual housing, with enriched kept pigs having a higher feed intake and body weight. Thus, not only current housing conditions, but also a (mis)match with the early life environment may affect behavior and growth of pigs.
Collapse
Affiliation(s)
- Lu Luo
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Inonge Reimert
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Anouschka Middelkoop
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Bas Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - J Elizabeth Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|