1
|
Li D, Chen J, Weng C, Huang X. Impact of the severity of brain injury on secondary adrenal insufficiency in traumatic brain injury patients and the influence of HPA axis dysfunction on prognosis. Int J Neurosci 2024; 134:1414-1423. [PMID: 37933491 DOI: 10.1080/00207454.2023.2280450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To investigate secondary adrenal insufficiency post varying traumatic brain injuries' and its impact on prognosis. METHODS 120 traumatic brain injury patients were categorized into mild, moderate and severe groups based on Glasgow Coma Scale. Adrenal function was evaluated through testing. RESULTS Secondary adrenal insufficiency rates were 0% (mild), 22.85% (moderate) and 44.82% (severe). Hypothalamus-pituitary-adrenal axis dysfunction rates were 14.81% (mild), 42.85% (moderate) and 63.79% (severe). Differences among groups were significant (p < .05). Patients with intact hypothalamus-pituitary-adrenal axis had shorter hospital stays and higher Glasgow Coma Scale scores. Receiver operating characteristic analysis of 24-h urinary free cortisol showed an area of 0.846, with a 17.62 μg/24h cutoff, 98.32% sensitivity and 52.37% specificity. In the low-dose adrenocorticotropic hormone test, with an 18 μg/dL cutoff, the receiver operating characteristic area was 0.546, with 46.28% sensitivity and 89.39% specificity. CONCLUSION As traumatic brain injury severity increases, secondary adrenal insufficiency incidence rises. The low-dose adrenocorticotropic hormone test is promising for hypothalamus-pituitary-adrenal axis evaluation. Patients with hypothalamus-pituitary-adrenal dysfunction experience prolonged hospitalization and worse prognosis.
Collapse
Affiliation(s)
- Dongping Li
- Critical Care Medicine Department (ICU), Affiliated Hospital of Putian University, Putian, China
| | - Jianhui Chen
- Critical Care Medicine Department (ICU), Affiliated Hospital of Putian University, Putian, China
| | - Chunfa Weng
- Critical Care Medicine Department (ICU), Affiliated Hospital of Putian University, Putian, China
| | - Xiaohai Huang
- Critical Care Medicine Department (ICU), Affiliated Hospital of Putian University, Putian, China
| |
Collapse
|
2
|
Carmi L, Zohar J, Juven-Wetzler A, Desarnaud F, Makotkine L, Bierer LM, Cohen H, Yehuda R. Promoter methylation of the glucocorticoid receptor following trauma may be associated with subsequent development of PTSD. World J Biol Psychiatry 2023; 24:578-586. [PMID: 36748398 PMCID: PMC10440098 DOI: 10.1080/15622975.2023.2177342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The ability to identify persons at elevated risk for post-traumatic stress disorder (PTSD) soon after exposure to trauma, could aid clinical decision-making and treatment. In this study, we explored whether cytosine methylation of the 1 F promoter of the NR3C1 (glucocorticoid receptor [GR]) gene obtained immediately following a trauma could predict PTSD. METHODS Our sample comprised 52 trauma survivors (28 women, 24 men), presenting to the Emergency Department (ED) within six hours of a traumatic event and followed for 13 months. Blood samples were taken at intake (n = 42) and again at the end of the study (13 months later, n = 27) to determine NR3C1-1F promoter methylation as well as plasma levels of cortisol, adrenocorticotropic-hormone (ACTH), and neuropeptide-Y (NPY). RESULTS At the 13-month follow-up, participants who met the PTSD criteria (n = 4) showed significantly lower NR3C1-1F promoter sum percent methylation compared to the non-PTSD group (n = 38). Further, NR3C1-1F methylation at ED intake was inversely correlated with PTSD severity 13 months later, indicating that lower NR3C1-1F promoter methylation in the immediate aftermath of trauma was associated with the development of PTSD. CONCLUSION To the extent that reduced promoter methylation is associated with greater GR expression and responsivity, this finding is consistent with the hypothalamic-pituitary-adrenal dysregulation previously described for PTSD.
Collapse
Affiliation(s)
- Lior Carmi
- Post Trauma Center, Chaim Sheba Medical Center, Ramat Gan, Israel
- The Data Science Institution, Reichman University, Herzliya, Israel
| | - Joseph Zohar
- Post Trauma Center, Chaim Sheba Medical Center, Ramat Gan, Israel
- Tel Aviv University, Tel Aviv, Israel
| | | | - Frank Desarnaud
- Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, Mental Health Care Center, PTSD Clinical Research Program & Laboratory of Clinical Neuroendocrinology and Neurochemistry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Louri Makotkine
- Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, Mental Health Care Center, PTSD Clinical Research Program & Laboratory of Clinical Neuroendocrinology and Neurochemistry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Linda M Bierer
- Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, Mental Health Care Center, PTSD Clinical Research Program & Laboratory of Clinical Neuroendocrinology and Neurochemistry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Hagit Cohen
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Rachel Yehuda
- Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, Mental Health Care Center, PTSD Clinical Research Program & Laboratory of Clinical Neuroendocrinology and Neurochemistry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| |
Collapse
|
3
|
Bernstein HG, Keilhoff G, Dobrowolny H, Steiner J. The many facets of CD26/dipeptidyl peptidase 4 and its inhibitors in disorders of the CNS - a critical overview. Rev Neurosci 2023; 34:1-24. [PMID: 35771831 DOI: 10.1515/revneuro-2022-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/10/2022] [Indexed: 01/11/2023]
Abstract
Dipeptidyl peptidase 4 is a serine protease that cleaves X-proline or X-alanine in the penultimate position. Natural substrates of the enzyme are glucagon-like peptide-1, glucagon inhibiting peptide, glucagon, neuropeptide Y, secretin, substance P, pituitary adenylate cyclase-activating polypeptide, endorphins, endomorphins, brain natriuretic peptide, beta-melanocyte stimulating hormone and amyloid peptides as well as some cytokines and chemokines. The enzyme is involved in the maintenance of blood glucose homeostasis and regulation of the immune system. It is expressed in many organs including the brain. DPP4 activity may be effectively depressed by DPP4 inhibitors. Apart from enzyme activity, DPP4 acts as a cell surface (co)receptor, associates with adeosine deaminase, interacts with extracellular matrix, and controls cell migration and differentiation. This review aims at revealing the impact of DPP4 and DPP4 inhibitors for several brain diseases (virus infections affecting the brain, tumours of the CNS, neurological and psychiatric disorders). Special emphasis is given to a possible involvement of DPP4 expressed in the brain.While prominent contributions of extracerebral DPP4 are evident for a majority of diseases discussed herein; a possible role of "brain" DPP4 is restricted to brain cancers and Alzheimer disease. For a number of diseases (Covid-19 infection, type 2 diabetes, Alzheimer disease, vascular dementia, Parkinson disease, Huntington disease, multiple sclerosis, stroke, and epilepsy), use of DPP4 inhibitors has been shown to have a disease-mitigating effect. However, these beneficial effects should mostly be attributed to the depression of "peripheral" DPP4, since currently used DPP4 inhibitors are not able to pass through the intact blood-brain barrier.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
4
|
Domínguez-Vías G, Segarra AB, Ramírez-Sánchez M, Prieto I. The Type of Fat in the Diet Influences Regulatory Aminopeptidases of the Renin-Angiotensin System and Stress in the Hypothalamic-Pituitary-Adrenal Axis in Adult Wistar Rats. Nutrients 2021; 13:nu13113939. [PMID: 34836194 PMCID: PMC8625891 DOI: 10.3390/nu13113939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Prolonged feeding with a high-fat diet (HFD) acts as a stressor by activating the functions of the hypothalamic-pituitary-adrenal gland (HPA) stress axis, accompanied of hypertension by inducing the renin-angiotensin-aldosterone system. Angiotensinases enzymes are regulatory aminopeptidases of angiotensin metabolism, which together with the dipeptidyl peptidase IV (DPP-IV), pyroglutamyl- and tyrosyl-aminopeptidase (pGluAP, TyrAP), participate in cognitive, stress, metabolic and cardiovascular functions. These functions appear to be modulated by the type of fat used in the diet. (2) Methods: To analyze a possible coordinated response of aminopeptidases, their activities were simultaneously determined in the hypothalamus, adenohypophysis and adrenal gland of adult male rats fed diets enriched with monounsaturated (standard diet (S diet) supplemented with 20% virgin olive oil; VOO diet) or saturated fatty acids (diet S supplemented with 20% butter and 0.1% cholesterol; Bch diet). Aminopeptidase activities were measured by fluorimetry using 2-Naphthylamine as substrates. (3) Results: the hypothalamus did not show differences in any of the experimental diets. In the pituitary, the Bch diet stimulated the renin-angiotensin system (RAS) by increasing certain angiotensinase activities (alanyl-, arginyl- and cystinyl-aminopeptidase) with respect to the S and VOO diets. DPP-IV activity was increased with the Bch diet, and TyrAP activity decrease with the VOO diet, having both a crucial role on stress and eating behavior. In the adrenal gland, both HFDs showed an increase in angiotensinase aspartyl-aminopeptidase. The interrelation of angiotensinases activities in the tissues were depending on the type of diet. In addition, correlations were shown between angiotensinases and aminopeptidases that regulate stress and eating behavior. (4) Conclusions: Taken together, these results support that the source of fat in the diet affects several peptidases activities in the HPA axis, which could be related to alterations in RAS, stress and feeding behavior.
Collapse
Affiliation(s)
- Germán Domínguez-Vías
- Unit of Physiology, Department of Health Sciences, University of Jaén, Las Lagunillas, 23071 Jaén, Spain; (A.B.S.); (M.R.-S.)
- Department of Physiology, Faculty of Health Sciences, Ceuta, University of Granada, 18071 Granada, Spain
- Correspondence: (G.D.-V.); (I.P.); Tel.: +34-953-212008 (I.P.)
| | - Ana Belén Segarra
- Unit of Physiology, Department of Health Sciences, University of Jaén, Las Lagunillas, 23071 Jaén, Spain; (A.B.S.); (M.R.-S.)
| | - Manuel Ramírez-Sánchez
- Unit of Physiology, Department of Health Sciences, University of Jaén, Las Lagunillas, 23071 Jaén, Spain; (A.B.S.); (M.R.-S.)
| | - Isabel Prieto
- Unit of Physiology, Department of Health Sciences, University of Jaén, Las Lagunillas, 23071 Jaén, Spain; (A.B.S.); (M.R.-S.)
- Correspondence: (G.D.-V.); (I.P.); Tel.: +34-953-212008 (I.P.)
| |
Collapse
|
5
|
Nahvi RJ, Tanelian A, Nwokafor C, Hollander CM, Peacock L, Sabban EL. Intranasal Neuropeptide Y as a Potential Therapeutic for Depressive Behavior in the Rodent Single Prolonged Stress Model in Females. Front Behav Neurosci 2021; 15:705579. [PMID: 34566592 PMCID: PMC8456029 DOI: 10.3389/fnbeh.2021.705579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/19/2021] [Indexed: 01/14/2023] Open
Abstract
The susceptibility to stress-elicited disorders is markedly influenced by sex. Women are twice as likely as men to develop posttraumatic stress disorder (PTSD), depression, anxiety disorders, and social impairments following exposure to traumatic stress. However, most of the studies in animal models examining putative therapeutics for stress-triggered impairments, including single prolonged stress (SPS), were performed predominantly with males. Previous studies in males demonstrated that intranasal neuropeptide Y (NPY) can provide therapeutic relief of many SPS-triggered behaviors, but is ineffective in females at the same dose. Thus, females may need a higher dose of exogenous NPY to attain a therapeutically significant concentration since the overwhelming majority of studies found that NPY levels in females in many brain regions are lower than in male rodents. Here, we examined SPS as an appropriate model to elicit many PTSD-associated symptoms in females and whether intranasal NPY at higher doses than with males is able to alter the development of SPS-triggered behavioral impairments. Sprague-Dawley female rats were exposed to SPS only, or in a separate cohort after SPS stressors were immediately infused intranasally with one of several doses of NPY, starting with 600 μg/rat—four times the dose effective in males. In the third cohort of animals, females were infused intranasally with either 600 μg NPY, omarigliptin [a dipeptidyl peptidase IV (DPP4) inhibitor], or both right after the SPS stressors. After 19 days they were tested on several behavioral tests. SPS elicited significant depressive/despair like behavior on the forced swim test (FST), anxiety behavior on the elevated plus maze (EPM), as well as impaired social interaction. On the FST, there was a dose-response effect of intranasal NPY, with 1,200 μg, but not 600 μg, preventing the development of the SPS-elicited depressive-like behavior. The omarigliptin and 600 μg NPY combined treatment, but neither alone, was also sufficient at preventing depressive-like behavior on the FST. The results demonstrate that: (1) SPS elicits several behavioral manifestations of PTSD in females; (2) early intervention with a high dose of intranasal NPY has therapeutic potential also for females; and (3) NPY cleavage by DPP4 may play a role in the higher dose requirement for females.
Collapse
Affiliation(s)
- Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Arax Tanelian
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Callie M Hollander
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Lauren Peacock
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
6
|
Golub Y, Stonawski V, Plank AC, Eichler A, Kratz O, Waltes R, von Hoersten S, Roessner V, Freitag CM. Anxiety Is Associated With DPPIV Alterations in Children With Selective Mutism and Social Anxiety Disorder: A Pilot Study. Front Psychiatry 2021; 12:644553. [PMID: 34267682 PMCID: PMC8275849 DOI: 10.3389/fpsyt.2021.644553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/31/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Both selective mutism (SM) and social anxiety disorder (SAD) are severe pediatric anxiety disorders with the common trait of behavioral inhibition (BI). The underlying pathophysiology of these disorders remains poorly understood, however converging evidence suggests that alterations in several peripheral molecular pathways might be involved. In a pilot study, we investigated alterations in plasma molecular markers (dipeptidyl peptidase-4 [DPPIV], interleukin-6 [IL-6], tumor necrosis factor-β [TNF-β] and neuropeptide-Y [NPY]) in children with SM, SAD, and healthy controls, as well as the correlation of these markers to symptom severity. Methods: We included 51 children and adolescents (aged 5-18 years; n = 29 girls): n = 20 children in the SM-, n = 16 in the SAD- and n = 15 in the control-group (CG). Peripheral blood samples were analyzed for DPPIV, IL-6, TNF-β, and NPY concentrations. Diverse psychometric measures were used for BI, anxiety, and mutism symptoms. Results: Lower DPPIV-levels were correlated with more anxiety symptoms. However, we could not find a difference in any molecular marker between the patients with SAD and SM in comparison to the CG. Conclusion: DPPIV is proposed as relevant marker for child and adolescent anxiety. Investigating the pathophysiology of SM and SAD focusing on state and trait variables as anxiety or BI might help better understanding the underlying mechanisms of these disorders. Further studies with especially larger cohorts are needed to validate the current pilot-findings.
Collapse
Affiliation(s)
- Yulia Golub
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Valeska Stonawski
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Anne C Plank
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Eichler
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Kratz
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Waltes
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Stephan von Hoersten
- Department of Experimental Therapy and Preclinical Center, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|