1
|
Recuerda M, Campagna L. How structural variants shape avian phenotypes: Lessons from model systems. Mol Ecol 2024; 33:e17364. [PMID: 38651830 DOI: 10.1111/mec.17364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Despite receiving significant recent attention, the relevance of structural variation (SV) in driving phenotypic diversity remains understudied, although recent advances in long-read sequencing, bioinformatics and pangenomic approaches have enhanced SV detection. We review the role of SVs in shaping phenotypes in avian model systems, and identify some general patterns in SV type, length and their associated traits. We found that most of the avian SVs so far identified are short indels in chickens, which are frequently associated with changes in body weight and plumage colouration. Overall, we found that relatively short SVs are more frequently detected, likely due to a combination of their prevalence compared to large SVs, and a detection bias, stemming primarily from the widespread use of short-read sequencing and associated analytical methods. SVs most commonly involve non-coding regions, especially introns, and when patterns of inheritance were reported, SVs associated primarily with dominant discrete traits. We summarise several examples of phenotypic convergence across different species, mediated by different SVs in the same or different genes and different types of changes in the same gene that can lead to various phenotypes. Complex rearrangements and supergenes, which can simultaneously affect and link several genes, tend to have pleiotropic phenotypic effects. Additionally, SVs commonly co-occur with single-nucleotide polymorphisms, highlighting the need to consider all types of genetic changes to understand the basis of phenotypic traits. We end by summarising expectations for when long-read technologies become commonly implemented in non-model birds, likely leading to an increase in SV discovery and characterisation. The growing interest in this subject suggests an increase in our understanding of the phenotypic effects of SVs in upcoming years.
Collapse
Affiliation(s)
- María Recuerda
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, New York, USA
| | - Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, New York, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Fujita T, Aoki N, Mori C, Homma KJ, Yamaguchi S. Molecular biology of serotonergic systems in avian brains. Front Mol Neurosci 2023; 16:1226645. [PMID: 37538316 PMCID: PMC10394247 DOI: 10.3389/fnmol.2023.1226645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved neurotransmitter and modulator. Neurons utilizing serotonin have been identified in the central nervous systems of all vertebrates. In the central serotonergic system of vertebrate species examined so far, serotonergic neurons have been confirmed to exist in clusters in the brainstem. Although many serotonin-regulated cognitive, behavioral, and emotional functions have been elucidated in mammals, equivalents remain poorly understood in non-mammalian vertebrates. The purpose of this review is to summarize current knowledge of the anatomical organization and molecular features of the avian central serotonergic system. In addition, selected key functions of serotonin are briefly reviewed. Gene association studies between serotonergic system related genes and behaviors in birds have elucidated that the serotonergic system is involved in the regulation of behavior in birds similar to that observed in mammals. The widespread distribution of serotonergic modulation in the central nervous system and the evolutionary conservation of the serotonergic system provide a strong foundation for understanding and comparing the evolutionary continuity of neural circuits controlling corresponding brain functions within vertebrates. The main focus of this review is the chicken brain, with this type of poultry used as a model bird. The chicken is widely used not only as a model for answering questions in developmental biology and as a model for agriculturally useful breeding, but also in research relating to cognitive, behavioral, and emotional processes. In addition to a wealth of prior research on the projection relationships of avian brain regions, detailed subdivision similarities between avian and mammalian brains have recently been identified. Therefore, identifying the neural circuits modulated by the serotonergic system in avian brains may provide an interesting opportunity for detailed comparative studies of the function of serotonergic systems in mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
3
|
Fujita T, Aoki N, Mori C, Serizawa S, Kihara-Negishi F, Homma KJ, Yamaguchi S. Dopaminergic nuclei in the chick midbrain express serotonin receptor subfamily genes. Front Physiol 2022; 13:1030621. [PMID: 36425295 PMCID: PMC9679639 DOI: 10.3389/fphys.2022.1030621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/28/2022] [Indexed: 08/05/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved modulator of numerous aspects of neural functions. Serotonergic neurons in the dorsal and median raphe nucleus provide ascending innervation to the entire forebrain and midbrain. Another important neural modulatory system exists in the midbrain, the dopaminergic system, which is associated to reward processing and motivation control. Dopaminergic neurons are distributed and clustered in the brain, classically designated as groups A8-A16. Among them, groups A8-A10 associated with reward processing and motivation control are located in the midbrain and projected to the forebrain. Recently, midbrain dopaminergic neurons were shown to be innervated by serotonergic neurons and modulated by 5-HT, with the crosstalk between serotonergic and dopaminergic systems attracting increased attention. In birds, previous studies revealed that midbrain dopaminergic neurons are located in the A8-A10 homologous clusters. However, the detailed distribution of dopaminergic neurons and the crosstalk between serotonergic and dopaminergic systems in the bird are poorly understood. To improve the understanding of the regulation of the dopaminergic by the serotonergic system, we performed in situ hybridization in the chick brainstem. We prepared RNA probes for chick orthologues of dopaminergic neuron-related genes; tyrosine hydroxylase (TH) and dopa decarboxylase (DDC), noradrenaline related genes; noradrenaline transporter (NAT) and dopamine beta-hydroxylase (DBH), and serotonin receptor genes; 5-HTR1A, 5-HTR1B, 5-HTR1D, 5-HTR1E, 5-HTR1F, 5-HTR2A, 5-HTR2B, 5-HTR2C, 5-HTR3A, 5-HTR4, 5-HTR5A, and 5-HTR7. We confirmed that the expression of tyrosine hydroxylase (TH) and NAT was well matched in all chick dopaminergic nuclei examined. This supported that the compensation of the function of dopamine transporter (DAT) by NAT is a general property of avian dopaminergic neurons. Furthermore, we showed that 5-HTR1A and 5-HTR1B were expressed in midbrain dopaminergic nuclei, suggesting the serotonergic regulation of the dopaminergic system via these receptors in chicks. Our findings will help us understand the interactions between the dopaminergic and serotonergic systems in birds at the molecular level.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shouta Serizawa
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Fumiko Kihara-Negishi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
4
|
Dudde A, Phi Van L, Schrader L, Obert AJ, Krause ET. Brain gain-Is the cognitive performance of domestic hens affected by a functional polymorphism in the serotonin transporter gene? Front Psychol 2022; 13:901022. [PMID: 36186393 PMCID: PMC9521620 DOI: 10.3389/fpsyg.2022.901022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
The serotonin transporter (5-HTT) plays an important role in regulating serotonergic transmission via removal of serotonin (5-HT) from synaptic clefts. Alterations in 5-HTT expression and subsequent 5-HT transmission have been found to be associated with changes in behaviour, such as fearfulness or activity, in humans and other vertebrates. In humans, alterations in 5-HTT expression have been suggested to be able to lead to better learning performance, with more fearful persons being better at learning. Similar effects of the variation in the 5-HTT on fearfulness have been found in chickens, and in this study, we investigated effects on learning. Therefore, we tested 52 adult laying hens, differing in their functional 5-HTT genotype (W/W, W/D and D/D) in an operant learning paradigm in three different phases (initial learning, reversal learning and extinction) and in a tonic immobility test for fearfulness. We found that the 5-HTT polymorphism affects the initial learning performance of laying hens, with homogeneous wild-type (W/W) hens being the slowest learners, and the most fearful birds. W/W hens, showed significantly more choices to solve the initial learning task (LME, p = 0.031) and had the highest latencies in a tonic immobility test (p = 0.039), indicating the highest fearfulness. Our results provide interesting first insights into the role of 5-HTT in chickens and its sensitive interaction with the environment. We further suggest that the 5-HTT gene can be an interesting target gene for future breeding strategies as well as for further experimental studies.
Collapse
Affiliation(s)
- Anissa Dudde
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Loc Phi Van
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Lars Schrader
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Arnd J. Obert
- Hannover Medical School, Institute for Diagnostic and Interventional Radiology, Hannover, Germany
| | - E. Tobias Krause
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| |
Collapse
|
5
|
Fujita T, Aoki N, Mori C, Fujita E, Matsushima T, Homma KJ, Yamaguchi S. Chick Hippocampal Formation Displays Subdivision- and Layer-Selective Expression Patterns of Serotonin Receptor Subfamily Genes. Front Physiol 2022; 13:882633. [PMID: 35464081 PMCID: PMC9024137 DOI: 10.3389/fphys.2022.882633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 12/23/2022] Open
Abstract
Hippocampal formation (HF) plays a key role in cognitive and emotional processing in mammals. In HF neural circuits, serotonin receptors (5-HTRs) modulate functions related to cognition and emotion. To understand the phylogenetic continuity of the neural basis for cognition and emotion, it is important to identify the neural circuits that regulate cognitive and emotional processing in animals. In birds, HF has been shown to be related to cognitive functions and emotion-related behaviors. However, details regarding the distribution of 5-HTRs in the avian brain are very sparse, and 5-HTRs, which are potentially involved in cognitive functions and emotion-related behaviors, are poorly understood. Previously, we showed that 5-HTR1B and 5-HTR3A were expressed in chick HF. To identify additional 5-HTRs that are potentially involved in cognitive and emotional functions in avian HF, we selected the chick orthologs of 5-HTR1D, 5-HTR1E, 5-HTR1F, 5-HTR2B, 5-HTR5A, and 5-HTR7 and performed in situ hybridization in the chick telencephalon. We found that 5-HTR1D, 5-HTR1E, 5-HTR5A, and 5-HTR7 were expressed in the chick HF, especially 5-HTR1D and 5-HTR1E, which showed subdivision- and layer-selective expression patterns, suggesting that the characteristic 5-HT regulation is involved in cognitive functions and emotion-related behaviors in these HF regions. These findings can facilitate the understanding of serotonin regulation in avian HF and the correspondence between the HF subdivisions of birds and mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Eiko Fujita
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
- *Correspondence: Shinji Yamaguchi,
| |
Collapse
|
6
|
Fujita T, Aoki N, Mori C, Fujita E, Matsushima T, Homma KJ, Yamaguchi S. Serotonergic Neurons in the Chick Brainstem Express Various Serotonin Receptor Subfamily Genes. Front Physiol 2022; 12:815997. [PMID: 35111079 PMCID: PMC8801614 DOI: 10.3389/fphys.2021.815997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved modulatory neurotransmitter. In mammals, 5-HT plays an important role in the regulation of many mental states and the processing of emotions in the central nervous system. Serotonergic neurons in the central nervous system, including the dorsal raphe (DR) and median raphe (MR) nuclei, are spatially clustered in the brainstem and provide ascending innervation to the entire forebrain and midbrain. Both between and within the DR and MR, these serotonergic neurons have different cellular characteristics, developmental origin, connectivity, physiology, and related behavioral functions. Recently, an understanding of the heterogeneity of the DR and MR serotonergic neurons has been developed at the molecular level. In birds, emotion-related behavior is suggested to be modulated by the 5-HT system. However, correspondence between the raphe nuclei of birds and mammals, as well as the cellular heterogeneity in the serotonergic neurons of birds are poorly understood. To further understand the heterogeneity of serotonergic neurons in birds, we performed a molecular dissection of the chick brainstem using in situ hybridization. In this study, we prepared RNA probes for chick orthologs of the following serotonin receptor genes: 5-HTR1A, 5-HTR1B, 5-HTR1D, 5-HTR1E, 5-HTR1F, 5-HTR2A, 5-HTR2B, 5-HTR2C, 5-HTR3A, 5-HTR4, 5-HTR5A, and 5-HTR7. We showed that the expression pattern of 5-HT receptors in the serotonin neurons of chick DR and MR may vary, suggesting heterogeneity among and within the serotonin neurons of the DR and MR in the chick brainstem. Our findings regarding the molecular properties of serotonergic neurons in the bird raphe system will facilitate a good understanding of the correspondence between bird and mammalian raphes.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Eiko Fujita
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Hokkaido, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
- *Correspondence: Shinji Yamaguchi,
| |
Collapse
|
7
|
The dorsal arcopallium of chicks displays the expression of orthologs of mammalian fear related serotonin receptor subfamily genes. Sci Rep 2020; 10:21183. [PMID: 33273690 PMCID: PMC7712838 DOI: 10.1038/s41598-020-78247-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Fear is an adaptive emotion that elicits defensive behavioural responses against aversive threats in animals. In mammals, serotonin receptors (5-HTRs) have been shown to modulate fear-related neural circuits in the basolateral amygdala complex (BLA). To understand the phylogenetic continuity of the neural basis for fear, it is important to identify the neural circuit that processes fear in other animals. In birds, fear-related behaviours were suggested to be processed in the arcopallium/amygdala complex and modulated by the serotonin (5-HT) system. However, details about the distribution of 5-HTRs in the avian brain are very sparsely reported, and the 5-HTR that is potentially involved in fear-related behaviour has not been elucidated. In this study, we showed that orthologs of mammalian 5-HTR genes that are expressed in the BLA, namely 5-HTR1A, 5-HTR1B, 5-HTR2A, 5-HTR2C, 5-HTR3A, and 5-HTR4, are expressed in a part of the chick arcopallium/amygdala complex called the dorsal arcopallium. This suggests that serotonergic regulation in the dorsal arcopallium may play an important role in regulating fear-related behaviour in birds. Our findings can be used as a basis for comparing the processing of fear and its serotonergic modulation in the mammalian amygdala complex and avian arcopallium/amygdala complex.
Collapse
|
8
|
Behavioural consequences of divergent selection on general locomotor activity in chickens. Behav Processes 2019; 169:103980. [PMID: 31580904 DOI: 10.1016/j.beproc.2019.103980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 11/21/2022]
Abstract
General locomotor activity is a highly variable phenotypic trait of animals. In domestic chickens it is different within and between breeds. The general locomotor activity is a substantially heritable trait and has been shown to be correlated with several other behavioural traits, such as for example feather pecking and anxiety in chickens. However, whether there is a relation between different levels of general locomotor activity and behavioural changes remained unclear. Therefore, a selection line model system has been established, where hens from the same founder population were selected over eight generations for either high or low general locomotor activity. The selection led to significant increases, respectively decreases in general locomotor activity and differences in growth. We here tested 128 hens of the 8th generation in three behavioural tests. We assumed fearfulness to be affected from selection on general locomotor activity, which we tested in a tonic immobility test. Socio-positive and socio-negative behaviours were tested in respective test paradigms. Fearfulness was higher in hens selected for high general locomotor activity. Social behavioural traits and feather pecking were not affected by selection for general locomotor activity. Evolutionary mechanisms that link fear and general locomotor activity are discussed and also why social behaviours and feather pecking seems not to be affected from selection on general locomotor activity. Our results provide interesting new insights on how selection on one trait, general locomotor activity, affects the behavioural phenotype in other dimensions too.
Collapse
|