1
|
Karlen-Amarante M, Bassi M, Barbosa RM, Sá JM, Menani JV, Colombari E, Zoccal DB, Colombari DSA. Maternal high-fat diet changes breathing pattern and causes excessive sympathetic discharge in juvenile offspring rat. Am J Physiol Lung Cell Mol Physiol 2023; 325:L662-L674. [PMID: 37786934 DOI: 10.1152/ajplung.00013.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/28/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Early life over-nutrition, as experienced in maternal obesity, is a risk factor for developing cardiorespiratory and metabolic diseases. Here we investigated the effects of high-fat diet (HFD) consumption on the breathing pattern and sympathetic discharge to blood vessels in juvenile offspring from dams fed with HFD (O-HFD). Adult female Holtzman rats were given a standard diet (SD) or HFD from 6 wk before gestation to weaning. At weaning (P21), the male offspring from SD dams (O-SD) and O-HFD received SD until the experimental day (P28-P45). Nerve recordings performed in decerebrated in situ preparations demonstrated that O-HFD animals presented abdominal expiratory hyperactivity under resting conditions and higher vasoconstrictor sympathetic activity levels. The latter was associated with blunted respiratory-related oscillations in sympathetic activity, especially in control animals. When exposed to elevated hypercapnia or hypoxia levels, the O-HFD animals mounted similar ventilatory and respiratory motor responses as the control animals. Hypercapnia and hypoxia exposure also increased sympathetic activity in both groups but did not reinstate the respiratory-sympathetic coupling in the O-HFD rats. In freely behaving conditions, O-HFD animals exhibited higher resting pulmonary ventilation and larger variability of arterial pressure levels than the O-SD animals due to augmented sympathetic modulation of blood vessel diameter. Maternal obesity modified the functioning of cardiorespiratory systems in offspring at a young age, inducing active expiration and sympathetic overactivity under resting conditions. These observations represent new evidence about pregnancy-related complications that lead to the development of respiratory distress and hypertension in children of obese mothers.NEW & NOTEWORTHY Maternal obesity is a risk factor for developing cardiorespiratory and metabolic diseases. This study highlights the changes on the breathing pattern and sympathetic discharge to blood vessels in juvenile offspring from dams fed with HFD. Maternal obesity modified the functioning of cardiorespiratory systems in offspring, inducing active expiration and sympathetic overactivity. These observations represent new evidence about pregnancy-related complications that lead to the development of respiratory distress and hypertension in children of obese mothers.
Collapse
Affiliation(s)
- Marlusa Karlen-Amarante
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Rafaela Moreira Barbosa
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jéssica Matheus Sá
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - José Vanderlei Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | | |
Collapse
|
2
|
King H, Reiber M, Philippi V, Stirling H, Aulehner K, Bankstahl M, Bleich A, Buchecker V, Glasenapp A, Jirkof P, Miljanovic N, Schönhoff K, von Schumann L, Leenaars C, Potschka H. Anesthesia and analgesia for experimental craniotomy in mice and rats: a systematic scoping review comparing the years 2009 and 2019. Front Neurosci 2023; 17:1143109. [PMID: 37207181 PMCID: PMC10188949 DOI: 10.3389/fnins.2023.1143109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/21/2023] Open
Abstract
Experimental craniotomies are a common surgical procedure in neuroscience. Because inadequate analgesia appears to be a problem in animal-based research, we conducted this review and collected information on management of craniotomy-associated pain in laboratory mice and rats. A comprehensive search and screening resulted in the identification of 2235 studies, published in 2009 and 2019, describing craniotomy in mice and/or rats. While key features were extracted from all studies, detailed information was extracted from a random subset of 100 studies/year. Reporting of perioperative analgesia increased from 2009 to 2019. However, the majority of studies from both years did not report pharmacologic pain management. Moreover, reporting of multimodal treatments remained at a low level, and monotherapeutic approaches were more common. Among drug groups, reporting of pre- and postoperative administration of non-steroidal anti-inflammatory drugs, opioids, and local anesthetics in 2019 exceeded that of 2009. In summary, these results suggest that inadequate analgesia and oligoanalgesia are persistent issues associated with experimental intracranial surgery. This underscores the need for intensified training of those working with laboratory rodents subjected to craniotomies. Systematic review registration https://osf.io/7d4qe.
Collapse
Affiliation(s)
- Hannah King
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Vanessa Philippi
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Aulehner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marion Bankstahl
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - André Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Aylina Glasenapp
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lara von Schumann
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cathalijn Leenaars
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
3
|
Dos-Santos RC, Ishioka G, Cognuck SQ, Mantovani M, Caliman IF, Elias LLK, Antunes-Rodrigues J. High-fat diet changes the behavioural and hormonal responses to water deprivation in male Wistar rats. Exp Physiol 2022; 107:1454-1466. [PMID: 36114682 DOI: 10.1113/ep090513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the effect of an obesogenic diet on the control of hydromineral balance in rats? What is the main finding and its importance? The results showed that, when dehydrated, rats fed a high-fat diet drink less water than their control-diet-fed counterparts. Changes in aquaporin-7 and peroxisome proliferator-activated receptor α expression in the white adipose tissue might be involved. ABSTRACT High-fat diet (HFD) increases fat accumulation, glycaemia and blood triglycerides and is used as a model to study obesity. Besides the metabolic changes, obesity likely affects water intake. We assessed the effects of HFD on behavioural and hormonal responses to water deprivation. Additionally, we measured if the adipose tissue is differentially affected by water deprivation in control and HFD-fed rats. HFD rats showed a decreased basal water intake when compared to control-fed rats. When subjected to 48 h of water deprivation, as expected, both control and HFD rats drank more water than the hydrated rats. However, the increase in water intake was lessened in HFD dehydrated rats. Similarly, the increase in haematocrit in dehydrated rats was less pronounced in HFD dehydrated rats. These results suggest that HFD diminishes drinking behaviour. White adipose tissue weight, glycaemia and plasma glycerol concentration were increased in HFD rats; however, after 48 h of water deprivation, these parameters were significantly decreased in dehydrated HFD rats, when compared to controls. The increase in adipose tissue caused by HFD may mitigate the effects of dehydration, possibly through the increased production of metabolic water caused by lipolysis in the adipocytes. Oxytocin possibly mediates the lipolytic response, since both its secretion and receptor expression are affected by dehydration in both control and HFD rats, which suggests that oxytocin signalling is maintained in these conditions. Changes in mediators of lipolysis, such as aquaporin-7 and peroxisome proliferator-activated receptor α, might contribute to the different effects observed in control and HFD rats.
Collapse
Affiliation(s)
- Raoni Conceição Dos-Santos
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Ishioka
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Susana Quiros Cognuck
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Milene Mantovani
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Izabela Facco Caliman
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucila Leico Kagohara Elias
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José Antunes-Rodrigues
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
4
|
High-Fat Diets Modify the Proteolytic Activities of Dipeptidyl-Peptidase IV and the Regulatory Enzymes of the Renin-Angiotensin System in Cardiovascular Tissues of Adult Wistar Rats. Biomedicines 2021; 9:biomedicines9091149. [PMID: 34572336 PMCID: PMC8470673 DOI: 10.3390/biomedicines9091149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 01/02/2023] Open
Abstract
(1) Background: The replacement of diets high in saturated fat (SAFA) with monounsaturated fatty acids (MUFA) is associated with better cardiovascular function and is related to the modulation of the activity of the local renin–angiotensin system (RAS) and the collagenase activity of dipeptidyl peptidase IV (DPP-IV). The objective of the work was to verify the capacity of different types of dietary fat on the regulatory activities of RAS and DPP-IV. (2) Methods: Male Wistar rats were fed for 24 weeks with three different diets: the standard diet (S), the standard diet supplemented with virgin olive oil (20%) (VOO), or with butter (20%) plus cholesterol (0.1%) (Bch). The proteolytic activities were determined by fluorometric methods in the soluble (sol) and membrane-bound (mb) fractions of the left ventricle and atrium, aorta, and plasma samples. (3) Results: With the VOO diet, angiotensinase values were significantly lower than with the Bch diet in the aorta (GluAP and ArgAP (mb)), ventricle (ArgAP (mb)) and atrium (CysAP (sol)). Significant decreases in DPP-IV (mb) activity occurred with the Bch diet in the atrium and aorta. The VOO diet significantly reduced the activity of the cardiac damage marker LeuAP (mb) in the ventricle and aorta, except for LeuAP (sol) in the ventricle, which was reduced with the Bch diet. (4) Conclusions: The introduction into the diet of a source rich in MUFA would have a beneficial cardiovascular effect on RAS homeostasis and cardiovascular functional stability.
Collapse
|
5
|
Araujo-Silva VC, Santos-Silva A, Lourenço AS, Barros-Barbosa CM, Moraes-Souza RQ, Soares TS, Karki B, Paula VG, Sinzato YK, Damasceno DC, Volpato GT. Congenital Anomalies Programmed by Maternal Diabetes and Obesity on Offspring of Rats. Front Physiol 2021; 12:701767. [PMID: 34447317 PMCID: PMC8383734 DOI: 10.3389/fphys.2021.701767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023] Open
Abstract
Embryo-fetal exposure to maternal disorders during intrauterine life programs long-term consequences for the health and illness of offspring. In this study, we evaluated whether mild diabetic rats that were given high-fat/high-sugar (HF/HS) diet presented maternal and fetal changes at term pregnancy. Female rats received citrate buffer (non-diabetic-ND) or streptozotocin (diabetic-D) after birth. According to the oral glucose tolerance test (OGTT), the experimental groups (n = 11 animals/group) were composed of non-diabetic and diabetic receiving standard diet (S) or HF/HS diet. High-fat/high-sugar diet (30% kcal of lard) in chow and water containing 5% sucrose and given 1 month before mating and during pregnancy. During and at the end of pregnancy, obesity and diabetes features were determined. After laparotomy, blood samples, periovarian fat, and uterine content were collected. The diabetic rats presented a higher glycemia and percentage of embryonic losses when compared with the NDS group. Rats DHF/HS presented increased obesogenic index, caloric intake, and periovarian fat weight and reduced gravid uterus weight in relation to the other groups. Besides, this association might lead to the inflammatory process, confirmed by leukocytosis. Obese rats (NDHF/HS and DHF/HS) showed higher triglyceride levels and their offspring with lower fetal weight and ossification sites, indicating intrauterine growth restriction. This finding may contribute to vascular alterations related to long-term hypertensive disorders in adult offspring. The fetuses from diabetic dams showed higher percentages of skeletal abnormalities, and DHF/HS dams still had a higher rate of anomalous fetuses. Thus, maternal diabetes and/or obesity induces maternal metabolic disorders that contribute to affect fetal development and growth.
Collapse
Affiliation(s)
- Vanessa Caruline Araujo-Silva
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Alice Santos-Silva
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Andressa Silva Lourenço
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Cristielly Maria Barros-Barbosa
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Rafaianne Queiroz Moraes-Souza
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.,Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Thaigra Sousa Soares
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.,Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Barshana Karki
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Verônyca Gonçalves Paula
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.,Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| |
Collapse
|
6
|
Oliveira V, Kwitek AE, Sigmund CD, Morselli LL, Grobe JL. Recent Advances in Hypertension: Intersection of Metabolic and Blood Pressure Regulatory Circuits in the Central Nervous System. Hypertension 2021; 77:1061-1068. [PMID: 33611936 DOI: 10.1161/hypertensionaha.120.14513] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity represents the single greatest ongoing roadblock to improving cardiovascular health. Prolonged obesity is associated with fundamental changes in the integrative control of energy balance, including the development of selective leptin resistance, which is thought to contribute to obesity-associated hypertension, and adaptation of resting metabolic rate (RMR) when excess weight is reduced. Leptin and the melanocortin system within the hypothalamus contribute to the control of both energy balance and blood pressure. While the development of drugs to stimulate RMR and thereby reverse obesity through activation of the melanocortin system has been pursued, most of the resulting compounds simultaneously cause hypertension. Evidence supports the concept that although feeding behaviors, RMR, and blood pressure are controlled through mechanisms that utilize similar molecular mediators, these mechanisms exist in anatomically dissociable networks. New evidence supports a major change in molecular signaling within AgRP (Agouti-related peptide) neurons of the arcuate nucleus of the hypothalamus during prolonged obesity and the existence of multiple distinct subtypes of AgRP neurons that individually contribute to control of feeding, RMR, or blood pressure. Finally, ongoing work by our laboratory and others support a unique role for AT1 (angiotensin II type 1 receptor) within one specific subtype of AgRP neuron for the control of RMR. We propose that understanding the unique biology of the AT1-expressing, RMR-controlling subtype of AgRP neurons will help to resolve the selective dysfunctions in RMR control that develop during prolonged obesity and potentially point toward novel druggable antiobesity targets that will not simultaneously cause hypertension.
Collapse
Affiliation(s)
- Vanessa Oliveira
- From the Department of Physiology (V.O., A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee
| | - Anne E Kwitek
- From the Department of Physiology (V.O., A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Cardiovascular Center (A.E.K., C.D.S., L.L.M., J.L.G.), Medical College of Wisconsin, Milwaukee
| | - Curt D Sigmund
- From the Department of Physiology (V.O., A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Cardiovascular Center (A.E.K., C.D.S., L.L.M., J.L.G.), Medical College of Wisconsin, Milwaukee.,Neuroscience Research Center (C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee
| | - Lisa L Morselli
- Cardiovascular Center (A.E.K., C.D.S., L.L.M., J.L.G.), Medical College of Wisconsin, Milwaukee.,Division of Endocrinology and Molecular Medicine, Department of Medicine (L.L.M.), Medical College of Wisconsin, Milwaukee
| | - Justin L Grobe
- From the Department of Physiology (V.O., A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Cardiovascular Center (A.E.K., C.D.S., L.L.M., J.L.G.), Medical College of Wisconsin, Milwaukee.,Neuroscience Research Center (C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Department of Biomedical Engineering (J.L.G.), Medical College of Wisconsin, Milwaukee.,Comprehensive Rodent Metabolic Phenotyping Core (J.L.G.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
7
|
Elsaafien K, de Kloet AD, Krause EG, Sumners C. Brain Angiotensin Type-1 and Type-2 Receptors in Physiological and Hypertensive Conditions: Focus on Neuroinflammation. Curr Hypertens Rep 2020; 22:48. [PMID: 32661792 PMCID: PMC7780348 DOI: 10.1007/s11906-020-01062-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW To review recent data that suggest opposing effects of brain angiotensin type-1 (AT1R) and type-2 (AT2R) receptors on blood pressure (BP). Here, we discuss recent studies that suggest pro-hypertensive and pro-inflammatory actions of AT1R and anti-hypertensive and anti-inflammatory actions of AT2R. Further, we propose mechanisms for the interplay between brain angiotensin receptors and neuroinflammation in hypertension. RECENT FINDINGS The renin-angiotensin system (RAS) plays an important role in regulating cardiovascular physiology. This includes brain AT1R and AT2R, both of which are expressed in or adjacent to brain regions that control BP. Activation of AT1R within those brain regions mediate increases in BP and cause neuroinflammation, which augments the BP increase in hypertension. The fact that AT1R and AT2R have opposing actions on BP suggests that AT1R and AT2R may have similar opposing actions on neuroinflammation. However, the mechanisms by which brain AT1R and AT2R mediate neuroinflammatory responses remain unclear. The interplay between brain angiotensin receptor subtypes and neuroinflammation exacerbates or protects against hypertension.
Collapse
Affiliation(s)
- Khalid Elsaafien
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Annette D de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Eric G Krause
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Colin Sumners
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA.
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|