1
|
Lu H, Tan A, Zhang Y, Chen Y, Ran S, Wang P. Neuroprotective effects of Shenghui decoction via inhibition of the JNK/p38 MAPK signaling pathway in an AlCl 3-induced zebrafish (Danio rerio) model of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117993. [PMID: 38423408 DOI: 10.1016/j.jep.2024.117993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is a multi-factorial degenerative disease, and multi-targeted therapies targeting multiple pathogenic mechanisms should be explored. Shenghui decoction (SHD) is an ancient traditional Chinese medicine (TCM) formula used clinically to alleviate AD. However, the precise mechanism of action of SHD as a therapeutic agent for AD remains unclear. AIM OF THE STUDY This study investigated the neuroprotective properties and potential mechanisms of action of SHD in mitigating AD-like symptoms induced by AlCl3 in a zebrafish model. MATERIALS AND METHODS Active components of SHD were detected using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Zebrafish were exposed to AlCl3 (200 μg/L) for 30 days to establish an AD zebrafish model. AlCl3-exposed zebrafish were treated with SHD or donepezil. Behavioral tests were used to assess learning and memory, locomotor activity, and AD-related anxiety and aggression in AlCl3-exposed zebrafish. Nissl staining and transmission electron microscopy were used to evaluate histological alterations in brain neurons. The concentrations of pro-inflammatory cytokines (tumor necrosis factor-α, TNF-α; interleukin-1β, IL-1β) were quantified using Enzyme-linked immunosorbent assay (ELISA). Markers of oxidative stress and cholinergic activity (acetylcholinesterase, AChE) were detected using biochemical assays. Western blotting and immunofluorescence were used to detect the protein expression levels of Aβ, p-tau, PSD-95, synaptophysin, TLR4, phosphorylation of NF-κB p65, p38, and JNK. RESULTS Fifteen SHD compounds were identified by UPLC-MS/MS analysis. SHD improved AlCl3-induced dyskinesia, learning and memory impairment, anxiety-like behavior, and aggressive behavior in zebrafish. AlCl3-exposed zebrafish showed AD-like pathology, overexpression of Aβ, hyperphosphorylated tau protein, marked neuronal damage, decreased expression of synaptic proteins, synaptophysin, and PSD-95, and impairment of synaptic structural plasticity. These effects were reversed by the SHD treatment. We also observed that SHD ameliorated oxidative stress and decreased AChE activity and inflammatory cytokine levels. These effects are similar to those observed for donepezil. Meanwhile, SHD could decrease the protein expression of TLR4 and inhibit phosphorylation of NF-κB, JNK, and p38 MAPK. These results demonstrate that SHD has the potential to exert neuroprotective effects, which may be partly mediated via inhibition of the JNK/p38 MAPK signaling pathway. CONCLUSIONS Our findings revealed the therapeutic mechanism of SHD in mitigating AD progression and suggested that SHD is a potent neuroprotectant that contributes to the future development of TCM modernization and broader clinical applications.
Collapse
Affiliation(s)
- Haifei Lu
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Aihua Tan
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China; Huanggang Hospital of Chinese Medicine, Affiliated to Hubei University of Chinese Medicine, Huanggang, 438000, China.
| | - Yini Zhang
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Yumeng Chen
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Simiao Ran
- Guangxi Medical University, Nanning 530200, China.
| | - Ping Wang
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
2
|
Piniella D, Zafra F. Functional crosstalk of the glycine transporter GlyT1 and NMDA receptors. Neuropharmacology 2023; 232:109514. [PMID: 37003571 DOI: 10.1016/j.neuropharm.2023.109514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
NMDA-type glutamate receptors (NMDARs) constitute one of the main glutamate (Glu) targets in the central nervous system and are involved in synaptic plasticity, which is the molecular substrate of learning and memory. Hypofunction of NMDARs has been associated with schizophrenia, while overstimulation causes neuronal death in neurodegenerative diseases or in stroke. The function of NMDARs requires coincidental binding of Glu along with other cellular signals such as neuronal depolarization, and the presence of other endogenous ligands that modulate their activity by allosterism. Among these allosteric modulators are zinc, protons and Gly, which is an obligatory co-agonist. These characteristics differentiate NMDARs from other receptors, and their structural bases have begun to be established in recent years. In this review we focus on the crosstalk between Glu and glycine (Gly), whose concentration in the NMDAR microenvironment is maintained by various Gly transporters that remove or release it into the medium in a regulated manner. The GlyT1 transporter is particularly involved in this task, and has become a target of great interest for the treatment of schizophrenia since its inhibition leads to an increase in synaptic Gly levels that enhances the activity of NMDARs. However, the only drug that has completed phase III clinical trials did not yield the expected results. Notwithstanding, there are additional drugs that continue to be investigated, and it is hoped that knowledge gained from the recently published 3D structure of GlyT1 may allow the rational design of more effective new drugs.
Collapse
Affiliation(s)
- Dolores Piniella
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Institute of Health Carlos III (ISCIII), Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Institute of Health Carlos III (ISCIII), Spain.
| |
Collapse
|
3
|
Xing J, Chen K, Gao S, Pousse M, Ying Y, Wang B, Chen L, Wang C, Wang L, Hu W, Lu Y, Gilson E, Ye J. Protein phosphatase 2A activators reverse age-related behavioral changes by targeting neural cell senescence. Aging Cell 2023; 22:e13780. [PMID: 36644807 PMCID: PMC10014060 DOI: 10.1111/acel.13780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 01/17/2023] Open
Abstract
The contribution of cellular senescence to the behavioral changes observed in the elderly remains elusive. Here, we observed that aging is associated with a decline in protein phosphatase 2A (PP2A) activity in the brains of zebrafish and mice. Moreover, drugs activating PP2A reversed age-related behavioral changes. We developed a transgenic zebrafish model to decrease PP2A activity in the brain through knockout of the ppp2r2c gene encoding a regulatory subunit of PP2A. Mutant fish exhibited the behavioral phenotype observed in old animals and premature accumulation of neural cells positive for markers of cellular senescence, including senescence-associated β-galactosidase, elevated levels cdkn2a/b, cdkn1a, senescence-associated secretory phenotype gene expression, and an increased level of DNA damage signaling. The behavioral and cell senescence phenotypes were reversed in mutant fish through treatment with the senolytic ABT263 or diverse PP2A activators as well as through cdkn1a or tp53 gene ablation. Senomorphic function of PP2A activators was demonstrated in mouse primary neural cells with downregulated Ppp2r2c. We conclude that PP2A reduction leads to neural cell senescence thereby contributing to age-related behavioral changes and that PP2A activators have senotherapeutic properties against deleterious behavioral effects of brain aging.
Collapse
Affiliation(s)
- Jun Xing
- Geriatric Department, Geriatric Medical Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Laboratory in Cancer, Aging and Hematology, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur University, Shanghai, China
| | - Kehua Chen
- Geriatric Department, Geriatric Medical Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Laboratory in Cancer, Aging and Hematology, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur University, Shanghai, China
| | - Shuaiyun Gao
- Geriatric Department, Geriatric Medical Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Laboratory in Cancer, Aging and Hematology, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur University, Shanghai, China
| | - Mélanie Pousse
- International Laboratory in Cancer, Aging and Hematology, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur University, Shanghai, China.,IRCAN, Côte d'Azur University, CNRS, Inserm, Nice, France
| | - Yilin Ying
- Geriatric Department, Geriatric Medical Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Laboratory in Cancer, Aging and Hematology, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur University, Shanghai, China.,IRCAN, Côte d'Azur University, CNRS, Inserm, Nice, France
| | - Bo Wang
- Geriatric Department, Geriatric Medical Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Laboratory in Cancer, Aging and Hematology, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur University, Shanghai, China
| | - Lianxiang Chen
- Geriatric Department, Geriatric Medical Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Laboratory in Cancer, Aging and Hematology, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur University, Shanghai, China
| | - Cuicui Wang
- Geriatric Department, Geriatric Medical Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Laboratory in Cancer, Aging and Hematology, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur University, Shanghai, China
| | - Lei Wang
- Geriatric Department, Geriatric Medical Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiguo Hu
- Geriatric Department, Geriatric Medical Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Lu
- Geriatric Department, Geriatric Medical Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Laboratory in Cancer, Aging and Hematology, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur University, Shanghai, China
| | - Eric Gilson
- International Laboratory in Cancer, Aging and Hematology, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur University, Shanghai, China.,IRCAN, Côte d'Azur University, CNRS, Inserm, Nice, France.,Department of Genetics, CHU, Nice, France
| | - Jing Ye
- Geriatric Department, Geriatric Medical Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Laboratory in Cancer, Aging and Hematology, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur University, Shanghai, China
| |
Collapse
|
4
|
Sun Y, Kumar SR, Wong CED, Tian Z, Bai H, Crump JG, Bajpai R, Lien CL. Craniofacial and cardiac defects in chd7 zebrafish mutants mimic CHARGE syndrome. Front Cell Dev Biol 2022; 10:1030587. [PMID: 36568983 PMCID: PMC9768498 DOI: 10.3389/fcell.2022.1030587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
Congenital heart defects occur in almost 80% of patients with CHARGE syndrome, a sporadically occurring disease causing craniofacial and other abnormalities due to mutations in the CHD7 gene. Animal models have been generated to mimic CHARGE syndrome; however, heart defects are not extensively described in zebrafish disease models of CHARGE using morpholino injections or genetic mutants. Here, we describe the co-occurrence of craniofacial abnormalities and heart defects in zebrafish chd7 mutants. These mutant phenotypes are enhanced in the maternal zygotic mutant background. In the chd7 mutant fish, we found shortened craniofacial cartilages and extra cartilage formation. Furthermore, the length of the ventral aorta is altered in chd7 mutants. Many CHARGE patients have aortic arch anomalies. It should be noted that the aberrant branching of the first branchial arch artery is observed for the first time in chd7 fish mutants. To understand the cellular mechanism of CHARGE syndrome, neural crest cells (NCCs), that contribute to craniofacial and cardiovascular tissues, are examined using sox10:Cre lineage tracing. In contrast to its function in cranial NCCs, we found that the cardiac NCC-derived mural cells along the ventral aorta and aortic arch arteries are not affected in chd7 mutant fish. The chd7 fish mutants we generated recapitulate some of the craniofacial and cardiovascular phenotypes found in CHARGE patients and can be used to further determine the roles of CHD7.
Collapse
Affiliation(s)
- Yuhan Sun
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States,Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| | - S. Ram Kumar
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Chee Ern David Wong
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Zhiyu Tian
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Haipeng Bai
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - J. Gage Crump
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ruchi Bajpai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ching Ling Lien
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States,*Correspondence: Ching Ling Lien,
| |
Collapse
|
5
|
Krueger LA, Morris AC. Eyes on CHARGE syndrome: Roles of CHD7 in ocular development. Front Cell Dev Biol 2022; 10:994412. [PMID: 36172288 PMCID: PMC9512043 DOI: 10.3389/fcell.2022.994412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The development of the vertebrate visual system involves complex morphogenetic interactions of cells derived from multiple embryonic lineages. Disruptions in this process are associated with structural birth defects such as microphthalmia, anophthalmia, and coloboma (collectively referred to as MAC), and inherited retinal degenerative diseases such as retinitis pigmentosa and allied dystrophies. MAC and retinal degeneration are also observed in systemic congenital malformation syndromes. One important example is CHARGE syndrome, a genetic disorder characterized by coloboma, heart defects, choanal atresia, growth retardation, genital abnormalities, and ear abnormalities. Mutations in the gene encoding Chromodomain helicase DNA binding protein 7 (CHD7) cause the majority of CHARGE syndrome cases. However, the pathogenetic mechanisms that connect loss of CHD7 to the ocular complications observed in CHARGE syndrome have not been identified. In this review, we provide a general overview of ocular development and congenital disorders affecting the eye. This is followed by a comprehensive description of CHARGE syndrome, including discussion of the spectrum of ocular defects that have been described in this disorder. In addition, we discuss the current knowledge of CHD7 function and focus on its contributions to the development of ocular structures. Finally, we discuss outstanding gaps in our knowledge of the role of CHD7 in eye formation, and propose avenues of investigation to further our understanding of how CHD7 activity regulates ocular and retinal development.
Collapse
Affiliation(s)
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
6
|
Jamadagni P, Breuer M, Schmeisser K, Cardinal T, Kassa B, Parker JA, Pilon N, Samarut E, Patten SA. Chromatin remodeller CHD7 is required for GABAergic neuron development by promoting PAQR3 expression. EMBO Rep 2021; 22:e50958. [PMID: 33900016 PMCID: PMC8183419 DOI: 10.15252/embr.202050958] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the chromatin remodeller‐coding gene CHD7 cause CHARGE syndrome (CS). CS features include moderate to severe neurological and behavioural problems, clinically characterized by intellectual disability, attention‐deficit/hyperactivity disorder and autism spectrum disorder. To investigate the poorly characterized neurobiological role of CHD7, we here generate a zebrafish chd7−/− model. chd7−/− mutants have less GABAergic neurons and exhibit a hyperactivity behavioural phenotype. The GABAergic neuron defect is at least in part due to downregulation of the CHD7 direct target gene paqr3b, and subsequent upregulation of MAPK/ERK signalling, which is also dysregulated in CHD7 mutant human cells. Through a phenotype‐based screen in chd7−/− zebrafish and Caenorhabditis elegans, we show that the small molecule ephedrine restores normal levels of MAPK/ERK signalling and improves both GABAergic defects and behavioural anomalies. We conclude that chd7 promotes paqr3b expression and that this is required for normal GABAergic network development. This work provides insight into the neuropathogenesis associated with CHD7 deficiency and identifies a promising compound for further preclinical studies.
Collapse
Affiliation(s)
| | - Maximilian Breuer
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Kathrin Schmeisser
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Tatiana Cardinal
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Betelhem Kassa
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - J Alex Parker
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Modelis inc., Montréal, QC, Canada
| | - Nicolas Pilon
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Département des sciences biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Département de pédiatrie, Université de Montréal, Montréal, QC, Canada
| | - Eric Samarut
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Modelis inc., Montréal, QC, Canada
| | - Shunmoogum A Patten
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| |
Collapse
|