1
|
Robison CL, Madore V, Cova N, Karbalivand M, Elsawa SF, Charntikov S. Differential Gene Expression in the Prefrontal Cortex and Hippocampus Following Long-Access Methamphetamine Self-Administration in Male Rats. Int J Mol Sci 2025; 26:1400. [PMID: 40003870 PMCID: PMC11855861 DOI: 10.3390/ijms26041400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Methamphetamine (METH) is a potent psychostimulant that disrupts cognitive and neurobiological functions in brain regions such as the prefrontal cortex (PFC) and hippocampus. Chronic METH use leads to altered synaptic plasticity, neuroinflammation, and mitochondrial dysfunction, contributing to methamphetamine use disorder (MUD). This study investigates gene expression changes following long-access intravenous METH self-administration in a rodent model. RNA sequencing (RNA-Seq) was conducted on PFC and hippocampal tissue to identify differentially expressed genes (DEGs) between METH-treated and control groups. We identified 41 DEGs in the PFC and 32 in the hippocampus, many involved in synaptic plasticity, immune response, and energy metabolism. Key findings included downregulation of mitochondrial function genes and upregulation of genes related to neural development and extracellular matrix organization, highlighting the profound transcriptional effects of METH. As a proof-of-concept, we explored individual gene expression variability in relation to economic demand for METH. Rats exhibiting higher demand showed distinct molecular profiles, including upregulation of genes linked to neural signaling and transcription regulation, such as Foxd1 and Cdh1. This preliminary analysis demonstrates that individual differences in drug-seeking correlate with unique gene expression patterns. These findings suggest that both group-level and individual molecular changes contribute to the neurobiological mechanisms of METH use. A better understanding of these individual differences could potentially inform the development of personalized therapeutic approaches for MUD.
Collapse
Affiliation(s)
| | - Victoria Madore
- Department of Psychology, University of New Hampshire, Durham, NH 03824, USA
| | - Nicole Cova
- Department of Psychology, University of New Hampshire, Durham, NH 03824, USA
| | - Mona Karbalivand
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA (S.F.E.)
| | - Sherine F. Elsawa
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA (S.F.E.)
| | - Sergios Charntikov
- Department of Psychology, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
2
|
Corley C, Craig A, Sadek S, Marusich JA, Chehimi SN, White AM, Holdiness LJ, Reiner BC, Gipson CD. Enhancing translation: A need to leverage complex preclinical models of addictive drugs to accelerate substance use treatment options. Pharmacol Biochem Behav 2024; 243:173836. [PMID: 39067531 PMCID: PMC11344688 DOI: 10.1016/j.pbb.2024.173836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Preclinical models of addictive drugs have been developed for decades to model aspects of the clinical experience in substance use disorders (SUDs). These include passive exposure as well as volitional intake models across addictive drugs and have been utilized to also measure withdrawal symptomatology and potential neurobehavioral mechanisms underlying relapse to drug seeking or taking. There are a number of Food and Drug Administration (FDA)-approved medications for SUDs, however, many demonstrate low clinical efficacy as well as potential sex differences, and we also note gaps in the continuum of care for certain aspects of clinical experiences in individuals who use drugs. In this review, we provide a comprehensive update on both frequently utilized and novel behavioral models of addiction with a focus on translational value to the clinical experience and highlight the need for preclinical research to follow epidemiological trends in drug use patterns to stay abreast of clinical treatment needs. We then note areas in which models could be improved to enhance the medications development pipeline through efforts to enhance translation of preclinical models. Next, we describe neuroscience efforts that can be leveraged to identify novel biological mechanisms to enhance medications development efforts for SUDs, focusing specifically on advances in brain transcriptomics approaches that can provide comprehensive screening and identification of novel targets. Together, the confluence of this review demonstrates the need for careful selection of behavioral models and methodological parameters that better approximate the clinical experience combined with cutting edge neuroscience techniques to advance the medications development pipeline for SUDs.
Collapse
Affiliation(s)
- Christa Corley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ashley Craig
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Safiyah Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Samar N Chehimi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley M White
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Lexi J Holdiness
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
3
|
Robison CL, Madore V, Cova N, Drugan RC, Charntikov S. Individual corticosterone response to intermittent swim stress predicts a shift in economic demand for ethanol from pre-stress to post-stress in male rats. Front Behav Neurosci 2024; 18:1418544. [PMID: 39206388 PMCID: PMC11349677 DOI: 10.3389/fnbeh.2024.1418544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigated the relationship between stress exposure and subsequent ethanol use, focusing on individual differences among male rats. We combined operant self-administration with behavioral economics to assess how intermittent swim stress affects ethanol consumption. This approach allowed for a nuanced analysis of the transition from regular ethanol intake to stress-induced escalation in economic demand. Results showed a consistent rise in ethanol demand post-stress among subjects, irrespective of exposure to actual swim stress or a sham procedure. This increase may result from a two-week abstinence or an inherent rise in demand over time. Significantly, we identified a direct link between post-stress corticosterone levels and the demand for ethanol, considering baseline levels. This correlation was particularly pronounced when examining the shifts in both corticosterone levels and demand for ethanol post-stress. However, neither post-stress corticosterone levels nor their change over time correlated significantly with changes in ethanol demand following a forced swim test that was administered 24 h after the intermittent swim stress test. This suggests potential context-specific or stressor-specific effects. Importantly, pre-stress ethanol demand did not significantly predict the corticosterone response to stress, indicating that high ethanol-demand rats do not inherently exhibit heightened stress sensitivity. Our research brings to light the complex interplay between stress and ethanol consumption, highlighting the critical role of individual differences in this relationship. This research introduces a nuanced perspective, underscoring the need for future studies in the realm of stress and substance use to give greater consideration to individual variability.
Collapse
Affiliation(s)
| | | | | | | | - Sergios Charntikov
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
4
|
Robison CL, Madore V, Cova N, Drugan RC, Charntikov S. Individual corticosterone response to intermittent swim stress predicts a shift in economic demand for ethanol from pre- stress to post-stress in male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582066. [PMID: 38464299 PMCID: PMC10925097 DOI: 10.1101/2024.02.26.582066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
This study investigated the relationship between stress exposure and subsequent ethanol use, focusing on individual differences among male rats. We combined operant self-administration with behavioral economics to assess how intermittent swim stress affects ethanol consumption. This approach allowed for a nuanced analysis of the transition from regular ethanol intake to stress-induced escalation in economic demand. Results showed a consistent rise in ethanol demand post-stress among subjects, irrespective of exposure to actual swim stress or a sham procedure. This increase may result from a two-week abstinence or an inherent rise in demand over time. Significantly, we identified a direct link between post-stress corticosterone levels and the demand for ethanol, considering baseline levels. This correlation was particularly pronounced when examining the shifts in both corticosterone levels and demand for ethanol post-stress. However, neither post-stress corticosterone levels nor their change over time correlated significantly with changes in ethanol demand following a forced swim test that was administered 24 hours after the intermittent swim stress test. This suggests potential context-specific or stressor-specific effects. Importantly, pre-stress ethanol demand did not significantly predict the corticosterone response to stress, indicating that high ethanol-demand rats do not inherently exhibit heightened stress sensitivity. Our research brings to light the complex interplay between stress and ethanol consumption, highlighting the critical role of individual differences in this relationship. This research introduces a nuanced perspective, underscoring the need for future studies in the realm of stress and substance use to give greater consideration to individual variability.
Collapse
|
5
|
Robison CL, Cova N, Madore V, Allen T, Barrett S, Charntikov S. Assessment of ethanol and nicotine interactions using a reinforcer demand modeling with grouped and individual levels of analyses in a long-access self-administration model using male rats. Front Behav Neurosci 2023; 17:1291128. [PMID: 38098500 PMCID: PMC10720750 DOI: 10.3389/fnbeh.2023.1291128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Previous reports have indicated the reciprocal effects of nicotine and ethanol on their rewarding and reinforcing properties, but studies using methodological approaches resembling substance use in vulnerable populations are lacking. In our study, rats first self-administered ethanol, and their sensitivity to ethanol's reinforcing effects was assessed using a reinforcer demand modeling approach. Subsequently, rats were equipped with intravenous catheters to self-administer nicotine, and their sensitivity to nicotine's reinforcing effects was evaluated using the same approach. In the final phase, rats were allowed to self-administer ethanol and nicotine concurrently, investigating the influence of one substance on the rate of responding for the other substance. Group analyses revealed notable differences in demand among sucrose, sweetened ethanol, and ethanol-alone, with sucrose demonstrating the highest demand and ethanol-alone exhibiting greater sensitivity to changes in cost. At the individual level, our study finds significant correlations between rats' demand for sucrose and sweetened ethanol, suggesting parallel efforts for both substances. Our individual data also suggest interconnections in the elasticity of demand for sweetened ethanol and ethanol-alone, as well as a potential relationship in price response patterns between ethanol and nicotine. Furthermore, concurrent self-administration of ethanol and nicotine at the group level displayed reciprocal effects, with reduced responding for nicotine in the presence of ethanol and increased responding for ethanol in the presence of nicotine. This study provides valuable insights into modeling the co-use of ethanol and nicotine and assessing their interaction effects using reinforcer demand modeling and concurrent self-administration or noncontingent administration tests. These findings contribute to our understanding of the complex interplay between ethanol and nicotine and have implications for elucidating the underlying mechanisms involved in polydrug use.
Collapse
Affiliation(s)
| | - Nicole Cova
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Victoria Madore
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Tyler Allen
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Scott Barrett
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sergios Charntikov
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
6
|
McNealy KR, Weyrich L, Bevins RA. The co-use of nicotine and prescription psychostimulants: A review of their behavioral and neuropharmacological interactions. Drug Alcohol Depend 2023; 248:109906. [PMID: 37216808 PMCID: PMC10361216 DOI: 10.1016/j.drugalcdep.2023.109906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Nicotine is commonly co-used with other psychostimulants. These high co-use rates have prompted much research on interactions between nicotine and psychostimulant drugs. These studies range from examination of illicitly used psychostimulants such as cocaine and methamphetamine to prescription psychostimulants used to treat attention deficit hyperactivity disorder (ADHD) such as methylphenidate (Ritalin™) and d-amphetamine (active ingredient of Adderall™). However, previous reviews largely focus on nicotine interactions with illicitly used psychostimulants with sparse mention of prescription psychostimulants. The currently available epidemiological and laboratory research, however, suggests high co-use between nicotine and prescription psychostimulants, and that these drugs interact to modulate use liability of either drug. The present review synthesizes epidemiological and experimental human and pre-clinical research assessing the behavioral and neuropharmacological interactions between nicotine and prescription psychostimulants that may contribute to high nicotine-prescription psychostimulant co-use. METHODS We searched databases for literature investigating acute and chronic nicotine and prescription psychostimulant interactions. Inclusion criteria were that participants/subjects had to experience nicotine and a prescription psychostimulant compound at least once in the study, in addition to assessment of their interaction. RESULTS AND CONCLUSIONS Nicotine clearly interacts with d-amphetamine and methylphenidate in a variety of behavioral tasks and neurochemical assays assessing co-use liability across preclinical, clinical, and epidemiological research. The currently available research suggests research gaps examining these interactions in women/female rodents, in consideration of ADHD symptoms, and how prescription psychostimulant exposure influences later nicotine-related outcomes. Nicotine has been less widely studied with alternative ADHD pharmacotherapy bupropion, but we also discuss this research.
Collapse
Affiliation(s)
- Kathleen R McNealy
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE68588-0308, USA.
| | - Lucas Weyrich
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Ln, Boys Town, NE68010, USA; Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE687178, USA
| | - Rick A Bevins
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE68588-0308, USA
| |
Collapse
|
7
|
Varenicline rescues nicotine-induced decrease in motivation for sucrose reinforcement. Behav Brain Res 2020; 397:112887. [PMID: 32931838 DOI: 10.1016/j.bbr.2020.112887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/21/2022]
Abstract
Varenicline is one of the top medications used for smoking cessation and is often prescribed before termination of nicotine use. The effect of this combined nicotine and varenicline use on the reward system and motivation for primary reinforcement is underexplored. The goal of this study was to assess the effects of nicotine and varenicline on motivation for a food reinforcer. In Experiment 1, we first assessed the responding for sucrose after pretreatment with nicotine (0, 0.1, or 0.4 mg/kg) and varenicline (0.0, 0.1, 1.0 mg/kg) using a behavioral economics approach. The responding for sucrose was then assessed using a progressive ratio schedule of reinforcement after pretreatment with all possible combinations of nicotine and varenicline doses. In Experiment 2, rats were assessed for the consumption of sucrose in home cages after pretreatment with nicotine and varenicline. We found that (a) nicotine decreased economic demand for sucrose, (b) varenicline rescued nicotine-induced reduction in economic demand for sucrose, and (c) history of varenicline treatment predicted responding for sucrose on a progressive ratio schedule of reinforcement where rats with a history of varenicline treatment responded significantly lower for sucrose across nicotine doses than rats that had not been exposed to varenicline. The results of Experiment 2 largely confirmed that nicotine decreases motivation for sucrose using a passive consumption protocol and that varenicline rescues this effect. Overall, these findings suggest that varenicline interacts with the effects of nicotine by restoring nicotine-induced reduction in motivation for appetitive rewards.
Collapse
|