1
|
Puthusseryppady V, Cossio D, Yu S, Rezwana F, Hegarty M, Jacobs EG, Chrastil ER. Less spatial exploration is associated with poorer spatial memory in midlife adults. Front Aging Neurosci 2024; 16:1382801. [PMID: 38919601 PMCID: PMC11196421 DOI: 10.3389/fnagi.2024.1382801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Despite its importance for navigation, very little is known about how the normal aging process affects spatial exploration behavior. We aimed to investigate: (1) how spatial exploration behavior may be altered early in the aging process, (2) the relationship between exploration behavior and subsequent spatial memory, and (3) whether exploration behavior can classify participants according to age. Methods Fifty healthy young (aged 18-28) and 87 healthy midlife adults (aged 43-61) freely explored a desktop virtual maze, learning the locations of nine target objects. Various exploration behaviors (object visits, distance traveled, turns made, etc.) were measured. In the test phase, participants navigated from one target object to another without feedback, and their wayfinding success (% correct trials) was measured. Results In the exploration phase, midlife adults exhibited less exploration overall compared to young adults, and prioritized learning target object locations over maze layout. In the test phase, midlife adults exhibited less wayfinding success when compared to the young adults. Furthermore, following principal components analysis (PCA), regression analyses indicated that both exploration quantity and quality components were associated with wayfinding success in the midlife group, but not the young adults. Finally, we could classify participants according to age with similar accuracy using either their exploration behavior or wayfinding success scores. Discussion Our results aid in the understanding of how aging impacts spatial exploration, and encourages future investigations into how pathological aging may affect spatial exploration behavior.
Collapse
Affiliation(s)
- Vaisakh Puthusseryppady
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Daniela Cossio
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Shuying Yu
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Farnaz Rezwana
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Mary Hegarty
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Emily G. Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Elizabeth R. Chrastil
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
2
|
Santo-Angles A, Temudo A, Babushkin V, Sreenivasan KK. Effective connectivity of working memory performance: a DCM study of MEG data. Front Hum Neurosci 2024; 18:1339728. [PMID: 38501039 PMCID: PMC10944968 DOI: 10.3389/fnhum.2024.1339728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
Visual working memory (WM) engages several nodes of a large-scale network that includes frontal, parietal, and visual regions; however, little is understood about how these regions interact to support WM behavior. In particular, it is unclear whether network dynamics during WM maintenance primarily represent feedforward or feedback connections. This question has important implications for current debates about the relative roles of frontoparietal and visual regions in WM maintenance. In the current study, we investigated the network activity supporting WM using MEG data acquired while healthy subjects performed a multi-item delayed estimation WM task. We used computational modeling of behavior to discriminate correct responses (high accuracy trials) from two different types of incorrect responses (low accuracy and swap trials), and dynamic causal modeling of MEG data to measure effective connectivity. We observed behaviorally dependent changes in effective connectivity in a brain network comprising frontoparietal and early visual areas. In comparison with high accuracy trials, frontoparietal and frontooccipital networks showed disrupted signals depending on type of behavioral error. Low accuracy trials showed disrupted feedback signals during early portions of WM maintenance and disrupted feedforward signals during later portions of maintenance delay, while swap errors showed disrupted feedback signals during the whole delay period. These results support a distributed model of WM that emphasizes the role of visual regions in WM storage and where changes in large scale network configurations can have important consequences for memory-guided behavior.
Collapse
Affiliation(s)
- Aniol Santo-Angles
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Brain and Health, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ainsley Temudo
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Vahan Babushkin
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kartik K. Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Brain and Health, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Thornberry C, Caffrey M, Commins S. Theta oscillatory power decreases in humans are associated with spatial learning in a virtual water maze task. Eur J Neurosci 2023; 58:4341-4356. [PMID: 37957526 DOI: 10.1111/ejn.16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Theta oscillations (4-8 Hz) in humans play a role in navigation processes, including spatial encoding, retrieval and sensorimotor integration. Increased theta power at frontal and parietal midline regions is known to contribute to successful navigation. However, the dynamics of cortical theta and its role in spatial learning are not fully understood. This study aimed to investigate theta oscillations via electroencephalogram (EEG) during spatial learning in a virtual water maze. Participants were separated into a learning group (n = 25) who learned the location of a hidden goal across 12 trials, or a time-matched non-learning group (n = 25) who were required to simply navigate the same arena, but without a goal. We compared all trials, at two phases of learning, the trial start and the goal approach. We also compared the first six trials with the last six trials within-groups. The learning group showed reduced low-frequency theta power at the frontal and parietal midline during the start phase and largely reduced theta combined with a short increase at both midlines during the goal-approach phase. These patterns were not found in the non-learning group, who instead displayed extensive increases in low-frequency oscillations at both regions during the trial start and at the parietal midline during goal approach. Our results support the theory that theta plays a crucial role in spatial encoding during exploration, as opposed to sensorimotor integration. We suggest our findings provide evidence for a link between learning and a reduction of theta oscillations in humans.
Collapse
Affiliation(s)
- Conor Thornberry
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Michelle Caffrey
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Sean Commins
- Department of Psychology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
4
|
Schinazi VR, Meloni D, Grübel J, Angus DJ, Baumann O, Weibel RP, Jeszenszky P, Hölscher C, Thrash T. Motivation moderates gender differences in navigation performance. Sci Rep 2023; 13:15995. [PMID: 37749312 PMCID: PMC10520045 DOI: 10.1038/s41598-023-43241-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023] Open
Abstract
Gender differences in navigation performance are a recurrent and controversial topic. Previous research suggests that men outperform women in navigation tasks and that men and women exhibit different navigation strategies. Here, we investigate whether motivation to complete the task moderates the relationship between navigation performance and gender. Participants learned the locations of landmarks in a novel virtual city. During learning, participants could trigger a top-down map that depicted their current position and the locations of the landmarks. During testing, participants were divided into control and treatment groups and were not allowed to consult the map. All participants were given 16 minutes to navigate to the landmarks, but those in the treatment group were monetarily penalized for every second they spent completing the task. Results revealed a negative relationship between physiological arousal and the time required to locate the landmarks. In addition, gender differences in strategy were found during learning, with women spending more time with the map and taking 40% longer than men to locate the landmarks. Interestingly, an interaction between gender and treatment group revealed that women in the control group required more time than men and women in the treatment group to retrieve the landmarks. During testing, women in the control group also took more circuitous routes compared to men in the control group and women in the treatment group. These results suggest that a concurrent and relevant stressor can motivate women to perform similarly to men, helping to diminish pervasive gender differences found in the navigation literature.
Collapse
Affiliation(s)
- Victor R Schinazi
- Chair of Cognitive Science, Department of Humanities, Social and Political Sciences, ETH Zurich, Zurich, Switzerland.
- Department of Psychology, Bond University, Robina, Australia.
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore.
| | - Dario Meloni
- Chair of Cognitive Science, Department of Humanities, Social and Political Sciences, ETH Zurich, Zurich, Switzerland
| | - Jascha Grübel
- Chair of Cognitive Science, Department of Humanities, Social and Political Sciences, ETH Zurich, Zurich, Switzerland
- Chair of Geoinformation Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Douglas J Angus
- Department of Psychology, Bond University, Robina, Australia
| | - Oliver Baumann
- Department of Psychology, Bond University, Robina, Australia
| | - Raphael P Weibel
- Chair of Cognitive Science, Department of Humanities, Social and Political Sciences, ETH Zurich, Zurich, Switzerland
- Chair of Technology Marketing, Department of Management, Technology and Economics, ETH Zurich, Zurich, Switzerland
| | - Péter Jeszenszky
- Chair of Cognitive Science, Department of Humanities, Social and Political Sciences, ETH Zurich, Zurich, Switzerland
- Centre for the Study of Language and Society, University of Bern, Bern, Switzerland
| | - Christoph Hölscher
- Chair of Cognitive Science, Department of Humanities, Social and Political Sciences, ETH Zurich, Zurich, Switzerland
| | - Tyler Thrash
- Chair of Cognitive Science, Department of Humanities, Social and Political Sciences, ETH Zurich, Zurich, Switzerland
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
5
|
Theta and gamma oscillatory dynamics in mouse models of Alzheimer's disease: A path to prospective therapeutic intervention. Neurosci Biobehav Rev 2022; 136:104628. [PMID: 35331816 DOI: 10.1016/j.neubiorev.2022.104628] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/26/2022]
Abstract
Understanding the neural basis of cognitive deficits, a key feature of Alzheimer's disease (AD), is imperative for achieving the therapy of the disease. Rhythmic oscillatory activities in neural systems are a fundamental mechanism for diverse brain functions, including cognition. In several neurological conditions like AD, aberrant neural oscillations have been shown to play a central role. Furthermore, manipulation of brain oscillations in animals has confirmed their impact on cognition and disease. In this article, we review the evidence from mouse models that shows how synchronized oscillatory activity is intricately linked to AD machinery. We primarily focus on recent reports showing abnormal oscillatory activities at theta and gamma frequencies in AD condition and their influence on cellular disturbances and cognitive impairments. A thorough comprehension of the role that neuronal oscillations play in AD pathology should pave the way to therapeutic interventions that can curb the disease.
Collapse
|
6
|
Dubreuil-Vall L, Laabs TL, Eyre HA, Smith E, Catuara-Solarz S. Sex differences in invasive and noninvasive neurotechnologies. SEX AND GENDER BIAS IN TECHNOLOGY AND ARTIFICIAL INTELLIGENCE 2022:133-160. [DOI: 10.1016/b978-0-12-821392-6.00008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Wahlstrom KL, Alvarez-Dieppa AC, McIntyre CK, LaLumiere RT. The medial entorhinal cortex mediates basolateral amygdala effects on spatial memory and downstream activity-regulated cytoskeletal-associated protein expression. Neuropsychopharmacology 2021; 46:1172-1182. [PMID: 33007779 PMCID: PMC8115646 DOI: 10.1038/s41386-020-00875-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023]
Abstract
The basolateral amygdala (BLA) modulates the consolidation of dorsal hippocampus (DH)-dependent spatial and dorsolateral striatum (DLS)-dependent cued-response memories, often in competition with one another. Evidence suggests that a critical mechanism for BLA influences on memory consolidation is via effects on activity-regulated cytoskeletal-associated protein (ARC) in downstream brain regions. However, the circuitry by which the BLA modulates ARC in multiple competing memory systems remains unclear. Prior evidence indicates that optogenetic stimulation of BLA projections to the medial entorhinal cortex (mEC) enhances the consolidation of spatial learning and impairs the consolidation of cued-response learning, suggesting this pathway provides a circuit for favoring one system over another. Therefore, we hypothesized the BLA-mEC pathway mediates effects on downstream ARC-based synaptic plasticity related to these competing memory systems. To address this, male and female Sprague-Dawley rats underwent spatial or cued-response Barnes maze training and, 45 min later, were sacrificed for ARC analysis in synaptoneurosomes from the DH and DLS. Initial experiments found that spatial training alone increased ARC levels in the DH above those observed in control rats and rats that underwent a cued-response version of the task. Postspatial training optogenetic stimulation of the BLA-mEC pathway altered the balance of ARC expression in the DH vs. DLS, specifically shifting the balance in favor of the DH-based spatial memory system, although the precise region of ARC changes differed by sex. These findings suggest that BLA-mEC pathway influences on ARC in downstream regions are a mechanism by which the BLA can favor one memory system over another.
Collapse
Affiliation(s)
- Krista L. Wahlstrom
- grid.214572.70000 0004 1936 8294Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242 USA
| | - Amanda C. Alvarez-Dieppa
- grid.267323.10000 0001 2151 7939School of Behavioral and Brain Sciences, University of Texas-Dallas, Richardson, TX 75080 USA
| | - Christa K. McIntyre
- grid.267323.10000 0001 2151 7939School of Behavioral and Brain Sciences, University of Texas-Dallas, Richardson, TX 75080 USA
| | - Ryan T. LaLumiere
- grid.214572.70000 0004 1936 8294Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
8
|
Sanches EF, Dos Santos TM, Odorcyk F, Untertriefallner H, Rezena E, Hoeper E, Avila T, Martini AP, Venturin GT, da Costa JC, Greggio S, Netto CA, Wyse AT. Pregnancy swimming prevents early brain mitochondrial dysfunction and causes sex-related long-term neuroprotection following neonatal hypoxia-ischemia in rats. Exp Neurol 2021; 339:113623. [PMID: 33529673 DOI: 10.1016/j.expneurol.2021.113623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of cognitive impairments in infants. Antenatal strategies improving the intrauterine environment can have high impact decreasing pregnancy-derived intercurrences. Physical exercise alters the mother-fetus unity and has been shown to prevent the energetic challenge imposed by HI. This study aimed to reveal neuroprotective mechanisms afforded by pregnancy swimming on early metabolic failure and late cognitive damage, considering animals' sex as a variable. Pregnant Wistar rats were submitted to daily swimming exercise (20' in a tank filled with 32 °C water) during pregnancy. Neonatal HI was performed in male and female pups at postnatal day 7. Electron chain transport, mitochondrial mass and function and ROS formation were assessed in the right brain hemisphere 24 h after HI. From PND45, reference and working spatial memory were tested in the Morris water maze. MicroPET-FDG images were acquired 24 h after injury (PND8) and at PND60, following behavioral analysis. HI induced early energetic failure, decreased enzymatic activity in electron transport chain, increased production of ROS in cortex and hippocampus as well as caused brain glucose metabolism dysfunction and late cognitive impairments. Maternal swimming was able to prevent mitochondrial dysfunction and to improve spatial memory. The intergenerational effects of swimming were sex-specific, since male rats were benefited most. In conclusion, maternal swimming was able to affect the mitochondrial response to HI in the offspring's brains, preserving its function and preventing cognitive damage in a sex-dependent manner, adding relevant information on maternal exercise neuroprotection and highlighting the importance of mitochondria as a therapeutic target for HI neuropathology.
Collapse
Affiliation(s)
- E F Sanches
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - T M Dos Santos
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - F Odorcyk
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - H Untertriefallner
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E Rezena
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E Hoeper
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - T Avila
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A P Martini
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G T Venturin
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - J C da Costa
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - S Greggio
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - C A Netto
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A T Wyse
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|