1
|
Maccioni P, Mugnaini C, Carai MAM, Gessa GL, Corelli F, Colombo G. Anorectic effect of COR659 in a rat model of overeating. Behav Pharmacol 2023; 34:437-442. [PMID: 37712580 DOI: 10.1097/fbp.0000000000000751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
COR659 is a new compound, the action of which is exerted via a dual mechanism: positive allosteric modulation of the GABAB receptor; antagonism or inverse agonism at the cannabinoid CB1 receptor. Recent lines of experimental evidence have indicated that COR659 potently and effectively reduced operant self-administration of and reinstatement of seeking behaviour for a chocolate-flavoured beverage. The present study was designed to assess whether the ability of COR659 to diminish these addictive-like, food-motivated behaviours extended to a rat model of overeating palatable food. To this end, rats were habituated to feed on a standard rat chow for 3 h/day; every 4 days, the 3-hour chow-feeding session was followed by a 1-hour feeding session with highly palatable, calorie-rich Danish butter cookies. Even though satiated, rats overconsumed cookies. COR659 (0, 2.5, 5, and 10 mg/kg, i.p.) was administered before the start of the cookie-feeding session. Treatment with all 3 doses of COR659 produced a substantial decrease in intake of cookies and calories from cookies. These results extend the anorectic profile of COR659 to overconsumption of a highly palatable food and intake of large amounts of unnecessary calories.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA)
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena (SI)
| | | | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA)
| | - Federico Corelli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena (SI)
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA)
| |
Collapse
|
2
|
Cerne R, Lippa A, Poe MM, Smith JL, Jin X, Ping X, Golani LK, Cook JM, Witkin JM. GABAkines - Advances in the discovery, development, and commercialization of positive allosteric modulators of GABA A receptors. Pharmacol Ther 2022; 234:108035. [PMID: 34793859 PMCID: PMC9787737 DOI: 10.1016/j.pharmthera.2021.108035] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022]
Abstract
Positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors or GABAkines have been widely used medicines for over 70 years for anxiety, epilepsy, sleep, and other disorders. Traditional GABAkines like diazepam have safety and tolerability concerns that include sedation, motor-impairment, respiratory depression, tolerance and dependence. Multiple GABAkines have entered clinical development but the issue of side-effects has not been fully solved. The compounds that are presently being developed and commercialized include several neuroactive steroids (an allopregnanolone formulation (brexanolone), an allopregnanolone prodrug (LYT-300), Sage-324, zuranolone, and ganaxolone), the α2/3-preferring GABAkine, KRM-II-81, and the α2/3/5-preferring GABAkine PF-06372865 (darigabat). The neuroactive steroids are in clinical development for post-partum depression, intractable epilepsy, tremor, status epilepticus, and genetic epilepsy disorders. Darigabat is in development for epilepsy and anxiety. The imidazodiazepine, KRM-II-81 is efficacious in animal models for the treatment of epilepsy and post-traumatic epilepsy, acute and chronic pain, as well as anxiety and depression. The efficacy of KRM-II-81 in models of pharmacoresistant epilepsy, preventing the development of seizure sensitization, and in brain tissue of intractable epileptic patients bodes well for improved therapeutics. Medicinal chemistry efforts are also ongoing to identify novel and improved GABAkines. The data document gaps in our understanding of the molecular pharmacology of GABAkines that drive differential pharmacological profiles, but emphasize advancements in the ability to successfully utilize GABAA receptor potentiation for therapeutic gain in neurology and psychiatry.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia.,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | | | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Lalit K. Golani
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M. Cook
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
3
|
Reducing effect of the novel positive allosteric modulator of the GABA B receptor, COR659, on binge-like alcohol drinking in male mice and rats. Psychopharmacology (Berl) 2022; 239:201-213. [PMID: 34812900 DOI: 10.1007/s00213-021-06022-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/04/2021] [Indexed: 01/08/2023]
Abstract
RATIONALE Binge drinking (BD) is a widespread drinkingpattern that may contribute to promote the development of alcohol use disorder (AUD). The comprehension of its neurobiological basis and the identification of molecules that may prevent BD are critical. Preclinical studies demonstrated that positive allosteric modulators (PAMs) of the GABAB receptor effectively reduced, and occasionally suppressed, the reinforcing and motivational properties of alcohol in rodents, suggesting their potential use as pharmacotherapy for AUD, including BD. Recently, we demonstrated that COR659, a novel GABAB PAM, effectively reduced (i) alcohol drinking under the 2-bottle choice regimen, (ii) alcohol self-administration under both fixed and progressive ratio schedules of reinforcement, and (iii) cue-induced reinstatement of alcohol-seeking behavior in Sardinian alcohol-preferring (sP) rats. OBJECTIVES The present study investigated whether the "anti-alcohol" properties of COR659 extend to binge-like drinking in rodents. METHODS COR659 was tested on the "drinking in the dark" (DID) paradigm in C57BL/6J mice and the 4-bottle "alcohol [10%, 20%, 30% (v/v)] versus water" choice regimen with limited and unpredictable access to alcohol in sP rats. RESULTS Acute administration of non-sedative doses of COR659 (10, 20, and 40 mg/kg; i.p.) effectively and selectively suppressed the intake of intoxicating amounts of alcohol (> 2 g/kg) consumed by C57BL/6J mice and sP rats exposed to these binge-like drinking experimental procedures. CONCLUSIONS The present data demonstrate the ability of COR659 to suppress binge-like drinking in rodents and strengthen the hypothesis that GABAB PAMs may represent a potentially effective pharmacotherapy for alcohol misuse.
Collapse
|
4
|
Maccioni P, Kaczanowska K, Lawrence H, Yun S, Bratzu J, Gessa GL, McDonald P, Colombo G. The Novel Positive Allosteric Modulator of the GABA B Receptor, KK-92A, Suppresses Alcohol Self-Administration and Cue-Induced Reinstatement of Alcohol Seeking in Rats. Front Cell Dev Biol 2021; 9:727576. [PMID: 34778249 PMCID: PMC8585307 DOI: 10.3389/fcell.2021.727576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Positive allosteric modulators (PAMs) of the GABAB receptor (GABAB PAMs) are of interest in the addiction field due to their ability to suppress several behaviors motivated by drugs of abuse. KK-92A is a novel GABAB PAM found to attenuate intravenous self-administration of nicotine and reinstatement of nicotine seeking in rats. This present study was aimed at extending to alcohol the anti-addictive properties of KK-92A. To this end, Sardinian alcohol-preferring rats were trained to lever-respond for oral alcohol (15% v/v) or sucrose (0.7% w/v) under the fixed ratio (FR) 5 (FR5) schedule of reinforcement. Once lever-responding behavior had stabilized, rats were exposed to tests with acutely administered KK-92A under FR5 and progressive ratio schedules of reinforcement and cue-induced reinstatement of previously extinguished alcohol seeking. KK-92A effect on spontaneous locomotor activity was also evaluated. Treatment with 10 and 20 mg/kg KK-92A suppressed lever-responding for alcohol, amount of self-administered alcohol, and breakpoint for alcohol. Treatment with 20 mg/kg KK-92A reduced sucrose self-administration. Combination of per se ineffective doses of KK-92A (2.5 mg/kg) and the GABAB receptor agonist, baclofen (1 mg/kg), reduced alcohol self-administration. Treatment with 5, 10, and 20 mg/kg KK-92A suppressed reinstatement of alcohol seeking. Only treatment with 80 mg/kg KK-92A affected spontaneous locomotor activity. These results demonstrate the ability of KK-92A to inhibit alcohol-motivated behaviors in rodents and confirm that these effects are common to the entire class of GABAB PAMs. The remarkable efficacy of KK-92A is discussed in terms of its ago-allosteric properties.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Katarzyna Kaczanowska
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Harshani Lawrence
- Chemical Biology Core, Moffitt Cancer Center, Tampa, FL, United States
| | - Sang Yun
- Chemical Biology Core, Moffitt Cancer Center, Tampa, FL, United States
| | - Jessica Bratzu
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Patricia McDonald
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL, United States
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| |
Collapse
|