1
|
Gao B, Jing Y, Li X, Cong S. Ubiquitin specific peptidase 11 knockdown slows Huntington's disease progression via regulating mitochondrial dysfunction and neuronal damage depending on PTEN-mediated AKT pathway. Mol Med 2025; 31:7. [PMID: 39780069 PMCID: PMC11715466 DOI: 10.1186/s10020-024-01061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Mitochondrial dysfunction and neuronal damage are major sign of cytopathology in Huntington's disease (HD), a neurodegenerative disease. Ubiquitin specific peptidase 11 (USP11) is a deubiquitinating enzyme involved in various physiological processes through regulating protein degradation. However, its specific role in HD is unclear. METHODS To interfere with USP11 expression, adeno-associated viruses 2 containing USP11-specific shRNA were injected into the bilateral striatum of 12-week-old R6/1 and WT mice. In vitro, the inducible PC12 cell model of HD was used in which the expression of an N-terminal truncation of huntingtin, with either wild type (Q23) or expanded polyglutamine (Q74) can be induced by the doxycycline. USP11 was knocked down to study its role in HD. The protein expression patterns in Q74 cells were quantified by label-free proteomics to further explore the target protein of USP11. Detecting the association between USP11 and Phosphatase and Tensin Homolog (PTEN) through Co-IP. RESULTS Herein, USP11 was found to be upregulated in the striatum of R6/1 mice (an HD model with gradual development of symptoms) in an age-dependent manner. The spontaneous HD was alleviated by silencing USP11, as evidenced by improved locomotor activity and spatial memory, attenuated striatal atrophy in R6/1 mice, reduced accumulation of mutant huntingtin protein, and restored mitochondrial function in vitro and in vivo. The results of label-free proteomics revealed a significant change in the protein expression profile. Through functional enrichment, we focused on PTEN, known as a negative regulator of the AKT pathway. We demonstrated that USP11 downregulation promoted ubiquitination modification of PTEN and activated the AKT pathway, and PTEN overexpression reversed the effects of USP11 knockdown. CONCLUSIONS Collectively, USP11 knockdown protects R6/1 mouse neurons from oxidative stress by alleviating mitochondrial dysfunction, thereby preventing the HD progression. This is achieved by inhibiting PTEN expression, which in turn activates the AKT pathway. This study suggests that USP11-PTEN-AKT signaling pathway may be a new attractive therapeutic target for HD.
Collapse
Affiliation(s)
- Bai Gao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuchen Jing
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xi Li
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Martínez-Gopar PE, Pérez-Rodríguez MJ, Angeles-López QD, Tristán-López L, González-Espinosa C, Pérez-Severiano F. Toll-Like Receptor 4 Plays a Significant Role in the Biochemical and Neurological Alterations Observed in Two Distinct Mice Models of Huntington's Disease. Mol Neurobiol 2023; 60:2678-2690. [PMID: 36701109 DOI: 10.1007/s12035-023-03234-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/14/2023] [Indexed: 01/27/2023]
Abstract
Toll-like receptors (TLRs) are central players in innate immunity responses. They are expressed in glial cells and neurons, and their overactivation leads to the production of proinflammatory molecules, neuroinflammation, and neural damage associated with many neurodegenerative pathologies, such as Huntington's disease (HD). HD is an inherited disorder caused by a mutation in the gene coding for the protein Huntingtin (Htt). Expression of mutated Htt (mHtt) causes progressive neuronal degeneration characterized by striatal loss of GABAergic neurons, oxidative damage, neuroinflammatory processes, and impaired motor behavior. The main animal models to study HD are the intrastriatal injection of quinolinic acid (QA) and the transgenic B6CBA-Tg (HDexon1)61Gpb/1 J mice (R6/1). Those models mimic neuronal damage and systemic manifestations of HD. The objective of this work was to study the participation of TLR4 in the manifestations of neuronal damage and HD symptoms in the two mentioned models. For this purpose, C57BL6/J and TLR4-KO mice were administered with QA, and after that motor activity, and neuronal and oxidative damages were measured. R6/1 and TLR4-KO were mated to study the effect of low expression of TLR4 on the phenotype manifestation in R6/1 mice. We found that TLR4 is involved in motor activity, and neurological and oxidative damage induced by intrastriatal injection of QA, and the low expression of TLR4 causes a delay in the onset of phenotypic manifestations by the mHtt expression in R6/1 mice. Our results show that TLR4 is involved in both models of HD and focuses then as a therapeutic target for some deleterious reactions in HD.
Collapse
Affiliation(s)
- Pablo E Martínez-Gopar
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Marian J Pérez-Rodríguez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
| | - Quetzalli D Angeles-López
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Luis Tristán-López
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico.
| |
Collapse
|
3
|
Duan Z, Shi L, He ZNT, Kuang C, Han T, Yang Q. The Protective Effect of IDO1 Inhibition in Aβ-Treated Neurons and APP/PS1 Mice. Am J Alzheimers Dis Other Demen 2023; 38:15333175231214861. [PMID: 37944012 PMCID: PMC10637170 DOI: 10.1177/15333175231214861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Alzheimer's disease (AD) is an inflammatory associated disease, in which dysregulated kynurenine pathway (KP) plays a key role. Through KP, L-tryptophan is catabolized into neurotoxic and neuroprotective metabolites. The overactivation of indolamine 2,3-dioxygenase1 (IDO1), the first rate-limiting enzyme of KP, and the abnormal accumulation of KP metabolites have been noted in AD, and blocking IDO1 has been suggested as a therapeutic strategy. However, the expression patterns of KP enzymes in AD, and whether these enzymes are related to AD pathogenesis, have not been fully studied. Herein, we examined the expression patterns of inflammatory cytokines, neurotrophic factors and KP enzymes, and the activity of IDO1 and IDO1 effector pathway AhR (aryl hydrocarbon receptor) in AD mice. We studied the effects of IDO1 inhibitors on Aβ-related neuroinflammation in rat primary neurons, mouse hippocampal neuronal cells, and APP/PS1 mice. The results further demonstrated the importance of IDO1-catalyzed KP in neuroinflammation in Alzheimer's disease.
Collapse
Affiliation(s)
- Zhenzhen Duan
- School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Lei Shi
- School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Zhen Ning Tony He
- School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Tianxiong Han
- Department of Traditional Chinese Medicine, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Qing Yang
- School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Sneha NP, Dharshini SAP, Taguchi YH, Gromiha MM. Integrative Meta-Analysis of Huntington's Disease Transcriptome Landscape. Genes (Basel) 2022; 13:2385. [PMID: 36553652 PMCID: PMC9777612 DOI: 10.3390/genes13122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder with autosomal dominant inheritance caused by glutamine expansion in the Huntingtin gene (HTT). Striatal projection neurons (SPNs) in HD are more vulnerable to cell death. The executive striatal population is directly connected with the Brodmann Area (BA9), which is mainly involved in motor functions. Analyzing the disease samples from BA9 from the SRA database provides insights related to neuron degeneration, which helps to identify a promising therapeutic strategy. Most gene expression studies examine the changes in expression and associated biological functions. In this study, we elucidate the relationship between variants and their effect on gene/downstream transcript expression. We computed gene and transcript abundance and identified variants from RNA-seq data using various pipelines. We predicted the effect of genome-wide association studies (GWAS)/novel variants on regulatory functions. We found that many variants affect the histone acetylation pattern in HD, thereby perturbing the transcription factor networks. Interestingly, some variants affect miRNA binding as well as their downstream gene expression. Tissue-specific network analysis showed that mitochondrial, neuroinflammation, vasculature, and angiogenesis-related genes are disrupted in HD. From this integrative omics analysis, we propose that abnormal neuroinflammation acts as a two-edged sword that indirectly affects the vasculature and associated energy metabolism. Rehabilitation of blood-brain barrier functionality and energy metabolism may secure the neuron from cell death.
Collapse
Affiliation(s)
- Nela Pragathi Sneha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - S. Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Y.-H. Taguchi
- Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| |
Collapse
|
5
|
Obara-Michlewska M. The tryptophan metabolism, kynurenine pathway and oxidative stress - Implications for glioma pathobiology. Neurochem Int 2022; 158:105363. [PMID: 35667490 DOI: 10.1016/j.neuint.2022.105363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
The kynurenine pathway receives increasing attention due to its involvement in central nervous system pathologies, i.a. neurodegenerative and psychiatric disorders, but also due to the contribution to the pathomechanism of neoplasms, including brain tumors.The present review focuses on kynurenine pathway activity in gliomas, brain tumors of glial origin. The upregulation of kynurenine pathway enzyme, indoleamine 2,3-dioxygenase (IDO), resulting in a decreased level of tryptophan and augmented kynurenine synthesis (increased (KYN/Trp ratio) are the most recognised hallmark of malignant transformation, characterised with immunomodulatory adaptations, providing an escape from defence mechanisms of the host, growth-beneficial milieu and resistance to some therapeutics. The review addresses, however, the oxidative/nitrosative stress-associated mechanisms of tryptophan catabolism, mainly the kynurenine pathway activity, linking them with glioma pathobiology.
Collapse
Affiliation(s)
- Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
6
|
The Role of AhR in the Hallmarks of Brain Aging: Friend and Foe. Cells 2021; 10:cells10102729. [PMID: 34685709 PMCID: PMC8534784 DOI: 10.3390/cells10102729] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, has been considered to be involved in aging phenotypes across several species. This receptor is a highly conserved biosensor that is activated by numerous exogenous and endogenous molecules, including microbiota metabolites, to mediate several physiological and toxicological functions. Brain aging hallmarks, which include glial cell activation and inflammation, increased oxidative stress, mitochondrial dysfunction, and cellular senescence, increase the vulnerability of humans to various neurodegenerative diseases. Interestingly, many studies have implicated AhR signaling pathways in the aging process and longevity across several species. This review provides an overview of the impact of AhR pathways on various aging hallmarks in the brain and the implications for AhR signaling as a mechanism in regulating aging-related diseases of the brain. We also explore how the nature of AhR ligands determines the outcomes of several signaling pathways in brain aging processes.
Collapse
|
7
|
Kacher R, Lejeune FX, Noël S, Cazeneuve C, Brice A, Humbert S, Durr A. Propensity for somatic expansion increases over the course of life in Huntington disease. eLife 2021; 10:64674. [PMID: 33983118 PMCID: PMC8118653 DOI: 10.7554/elife.64674] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/27/2021] [Indexed: 12/03/2022] Open
Abstract
Recent work on Huntington disease (HD) suggests that somatic instability of CAG repeat tracts, which can expand into the hundreds in neurons, explains clinical outcomes better than the length of the inherited allele. Here, we measured somatic expansion in blood samples collected from the same 50 HD mutation carriers over a twenty-year period, along with post-mortem tissue from 15 adults and 7 fetal mutation carriers, to examine somatic expansions at different stages of life. Post-mortem brains, as previously reported, had the greatest expansions, but fetal cortex had virtually none. Somatic instability in blood increased with age, despite blood cells being short-lived compared to neurons, and was driven mostly by CAG repeat length, then by age at sampling and by interaction between these two variables. Expansion rates were higher in symptomatic subjects. These data lend support to a previously proposed computational model of somatic instability-driven disease.
Collapse
Affiliation(s)
- Radhia Kacher
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France.,Univ. Grenoble Alpes, INSERM, U 1216, Grenoble Institut Neurosciences, Grenoble, France
| | - François-Xavier Lejeune
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France.,Paris Brain Institute's Data and Analysis Core, University Hospital Pitié-Salpêtrière, Paris, France
| | - Sandrine Noël
- Neurogenetics Laboratory, Department of Genetics, Assistance Publique-Hôpitaux de Paris, University Hospital Pitié-Salpêtrière, Paris, France
| | - Cécile Cazeneuve
- Neurogenetics Laboratory, Department of Genetics, Assistance Publique-Hôpitaux de Paris, University Hospital Pitié-Salpêtrière, Paris, France
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | - Sandrine Humbert
- Univ. Grenoble Alpes, INSERM, U 1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France.,Neurogenetics Laboratory, Department of Genetics, Assistance Publique-Hôpitaux de Paris, University Hospital Pitié-Salpêtrière, Paris, France
| |
Collapse
|