1
|
Patrick MB, Omar N, Werner CT, Mitra S, Jarome TJ. The ubiquitin-proteasome system and learning-dependent synaptic plasticity - A 10 year update. Neurosci Biobehav Rev 2023; 152:105280. [PMID: 37315660 PMCID: PMC11323321 DOI: 10.1016/j.neubiorev.2023.105280] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Over 25 years ago, a seminal paper demonstrated that the ubiquitin-proteasome system (UPS) was involved in activity-dependent synaptic plasticity. Interest in this topic began to expand around 2008 following another seminal paper showing that UPS-mediated protein degradation controlled the "destabilization" of memories following retrieval, though we remained with only a basic understanding of how the UPS regulated activity- and learning-dependent synaptic plasticity. However, over the last 10 years there has been an explosion of papers on this topic that has significantly changed our understanding of how ubiquitin-proteasome signaling regulates synaptic plasticity and memory formation. Importantly, we now know that the UPS controls much more than protein degradation, is involved in plasticity underlying drugs of abuse and that there are significant sex differences in how ubiquitin-proteasome signaling is used for memory storage processes. Here, we aim to provide a critical 10-year update on the role of ubiquitin-proteasome signaling in synaptic plasticity and memory formation, including updated cellular models of how ubiquitin-proteasome activity could be regulating learning-dependent synaptic plasticity in the brain.
Collapse
Affiliation(s)
- Morgan B Patrick
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nour Omar
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Craig T Werner
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA; National Center for Wellness and Recovery, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA.
| | - Swarup Mitra
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA.
| | - Timothy J Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
2
|
Wu L, Wang Z, Lad S, Gilyazova N, Dougharty DT, Marcus M, Henderson F, Ray WK, Siedlak S, Li J, Helm RF, Zhu X, Bloom GS, Wang SHJ, Zou WQ, Xu B. Selective Detection of Misfolded Tau From Postmortem Alzheimer's Disease Brains. Front Aging Neurosci 2022; 14:945875. [PMID: 35936779 PMCID: PMC9352240 DOI: 10.3389/fnagi.2022.945875] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/21/2022] [Indexed: 01/04/2023] Open
Abstract
Tau aggregates are present in multiple neurodegenerative diseases known as "tauopathies," including Alzheimer's disease, Pick's disease, progressive supranuclear palsy, and corticobasal degeneration. Such misfolded tau aggregates are therefore potential sources for selective detection and biomarker discovery. Six human tau isoforms present in brain tissues and both 3R and 4R isoforms have been observed in the neuronal inclusions. To develop selective markers for AD and related rare tauopathies, we first used an engineered tau protein fragment 4RCF as the substrate for ultrasensitive real-time quaking-induced conversion analyses (RT-QuIC). We showed that misfolded tau from diseased AD and other tauopathy brains were able to seed recombinant 4RCF substrate. We further expanded to use six individual recombinant tau isoforms as substrates to amplify misfolded tau seeds from AD brains. We demonstrated, for the first time to our knowledge, that misfolded tau from the postmortem AD brain tissues was able to specifically seed all six full-length human tau isoforms. Our results demonstrated that RT-QuIC analysis can discriminate AD and other tauopathies from non-AD normal controls. We further uncovered that 3R-tau isoforms displayed significantly faster aggregation kinetics than their 4R-tau counterparts under conditions of both no seeding and seeding with AD brain homogenates. In summary, our work offers potential new avenues of misfolded tau detection as potential biomarkers for diagnosis of AD and related tauopathies and provides new insights into isoform-specific human tau aggregation.
Collapse
Affiliation(s)
- Ling Wu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, United States
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Zerui Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Shradha Lad
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Nailya Gilyazova
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, United States
| | - Darren T. Dougharty
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Madeleine Marcus
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Frances Henderson
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - W. Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Sandra Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Jianyong Li
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Richard F. Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - George S. Bloom
- Departments of Biology, Cell Biology, and Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Shih-Hsiu J. Wang
- Department of Pathology and Neurology, Duke University Medical Center, Durham, NC, United States
| | - Wen-Quan Zou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Bin Xu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, United States
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|