1
|
Song Y, Zhang H, Wang X, Huang L, Kang Y, Feng Z, Zhao F, Zhuang H, Zhang J. Acute high-intensity noise exposure exacerbates anxiety-like behavior via neuroinflammation and blood brain barrier disruption of hippocampus in male rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:11. [PMID: 40264210 PMCID: PMC12016381 DOI: 10.1186/s12993-025-00275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
The health risks associated with acute noise exposure are increasing, particularly the risk of mental health. This study aims to identify the association between acute high-intensity noise exposure and anxiety behavior in male rats, and to explore the associated neurobiological mechanisms. Male rats were subjected to different levels of acute high-intensity noise to determine the intensity that causes long-lasting anxiety-like behaviors. Anxiety-like behaviors were evaluated using the open field test (OFT) and the elevated plus maze test (EPMT) on the third day and 1month post-exposure, respectively. A range of techniques, including immunofluorescence staining, western blot, ELISA, and real-time quantitative PCR, were used to investigate neuronal apoptosis, glial cell activation, neuroinflammation, and blood-brain barrier (BBB) disruption in the hippocampus. Upon exposure to 135 dB of acute noise, male rats exhibited enduring anxiety-like behaviors. Subsequent investigations discovered that this noise intensity not only activated glial cells and triggered neuroinflammation within the hippocampus but also decreased the expression levels of ZO-1, claudin-5, and occludin, suggesting a disruption of the BBB. Additionally, this exposure was associated with the induction of neuronal apoptosis in the hippocampal region. In conclusion, acute exposure to 135 dB noise may cause persistent anxiety in male rats through a cyclical interaction between neuroinflammation and BBB disruption, potentially leading to neuronal apoptosis.
Collapse
Affiliation(s)
- Yifei Song
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 711049, Shaanxi, China
| | - Haoyu Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 711049, Shaanxi, China
| | - Xiaoni Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 711049, Shaanxi, China
| | - Lei Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 711049, Shaanxi, China
| | - Yiting Kang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 711049, Shaanxi, China
| | - Zeguo Feng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 711049, Shaanxi, China
| | - Fadong Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 711049, Shaanxi, China
- Equipment Management and Support College, Engineering University of People's Armed Police, Xi'an, China
| | - Hongwei Zhuang
- Equipment Management and Support College, Engineering University of People's Armed Police, Xi'an, China
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 711049, Shaanxi, China.
| |
Collapse
|
2
|
Song Y, Wang X, Zhang H, Ma R, Kang Y, Di X, Feng Z, Ni C, Zhao F, Zhuang H, Zhang J. High-intensity acute noise exposure causes anxiety in female rats by inducing hippocampal neuron apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117833. [PMID: 39908868 DOI: 10.1016/j.ecoenv.2025.117833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND The increasing prevalence of acute noise exposure poses a significant threat to mental health. Identifying the intensity of noise that impair health is crucial for developing effective interventions. The study aimed to determine the acute noise intensity thresholds that elicit anxiety-like behaviors and brain damage in female rats, and then to elucidate the underlying neurobiological mechanisms. METHODS Female rats were subjected to acute noise exposure at levels of 105, 115, 125, and 135 dB to determine the intensity thresholds that elicit anxiety-like behaviors and brain damage were assessed at the 3th day and 1 month post-exposure. RESULTS We found that acute noise exposure at 135 dB induced significant anxiety-like behaviors and hippocampal neuron apoptosis on the third day, with these effects persisting up to one month after exposure. KEGG enrichment analysis of differentially expressed genes (DEGs) revealed alterations in the PI3K-AKT signaling pathway, as confirmed by Western blot analysis. CONCLUSIONS Our findings indicate that acute noise exposure at 135 dB elicits anxiety-like behaviors in female rats on the third day post-exposure, with these effects persisting up to one month. This sustained anxiety is attributed to the inhibition of the PI3K-AKT signaling pathway and the subsequent activation of the apoptotic Caspase-3/BCL-2/BAX pathway, culminating in hippocampal neuron apoptosis.
Collapse
Affiliation(s)
- Yifei Song
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoni Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Haoyu Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Ma
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yiting Kang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaohui Di
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zeguo Feng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Can Ni
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fadong Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Equipment Management and Support College, Chinese People's Armed Police Force Engineering University, Xi'an, China
| | - Hongwei Zhuang
- Equipment Management and Support College, Chinese People's Armed Police Force Engineering University, Xi'an, China
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Golmohammadi M, Ivraghi MS, Hasan EK, Huldani H, Zamanian MY, Rouzbahani S, Mustafa YF, Al-Hasnawi SS, Alazbjee AAA, Khalajimoqim F, Khalaj F. Protective effects of pioglitazone in renal ischemia-reperfusion injury (RIRI): focus on oxidative stress and inflammation. Clin Exp Nephrol 2024; 28:955-968. [PMID: 38935212 DOI: 10.1007/s10157-024-02525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (RIRI) is a critical phenomenon that compromises renal function and is the most serious health concern related to acute kidney injury (AKI). Pioglitazone (Pio) is a known agonist of peroxisome proliferator-activated receptor-gamma (PPAR-γ). PPAR-γ is a nuclear receptor that regulates genes involved in inflammation, metabolism, and cellular differentiation. Activation of PPAR-γ is associated with antiinflammatory and antioxidant effects, which are relevant to the pathophysiology of RIRI. This study aimed to investigate the protective effects of Pio in RIRI, focusing on oxidative stress and inflammation. METHODS We conducted a comprehensive literature search using electronic databases, including PubMed, ScienceDirect, Web of Science, Scopus, and Google Scholar. RESULTS The results of this study demonstrated that Pio has antioxidant, anti-inflammatory, and anti-apoptotic activities that counteract the consequences of RIRI. The study also discussed the underlying mechanisms, including the modulation of various pathways such as TNF-α, NF-κB signaling systems, STAT3 pathway, KIM-1 and NGAL pathways, AMPK phosphorylation, and autophagy flux. Additionally, the study presented a summary of various animal studies that support the potential protective effects of Pio in RIRI. CONCLUSION Our findings suggest that Pio could protect the kidneys from RIRI by improving antioxidant capacity and decreasing inflammation. Therefore, these findings support the potential of Pio as a therapeutic strategy for preventing RIRI in different clinical conditions.
Collapse
Affiliation(s)
- Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | | | | | - Huldani Huldani
- Department of Physiology, Faculty of Medicine Lambung, Mangkurat University, South Kalimantan, Banjarmasin, Indonesia
| | - Mohammad Yasin Zamanian
- Urology and Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Shiva Rouzbahani
- Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
- Department of Community Medicine and Family Physician, School of Medicine, Isfahan University of Medical Sciences, Hezar Jarib Blvd, Isfahan, Iran
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | | | - Faranak Khalajimoqim
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | - Fattaneh Khalaj
- Digestive Diseases Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Chen X, Chen C. Effects of Ward Noise Management on Mental Health and Hip Function in Elderly Patients Undergoing Total Hip Arthroplasty. Noise Health 2024; 26:423-429. [PMID: 39345087 PMCID: PMC11539983 DOI: 10.4103/nah.nah_87_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE The aim of this study was to explore the influence of ward noise management on the mental health and hip joint function of elderly patients post-total hip arthroplasty. METHODS The retrospective analysis involved the medical records of 160 elderly patients who underwent total hip arthroplasty at Nanchang First Hospital from March 2021 to January 2023. The observation group received ward noise management (n = 75) and the control group received perioperative routine management (n = 85). The noise level, Self-rating Depression Scale (SDS), Self-rating Anxiety Scale (SAS), the Generic Quality of Life Inventory-74 (GQOLI-74), Harris Hip Score (HHS) system, and satisfaction scale were used to evaluate patients. T test and chi-square tests were used for statistical analysis. RESULTS The observation group exhibited a significantly lower noise level compared to the control group (P < 0.05). No significant differences were observed in the general information and preoperative SDS, SAS, HHS, and GQOLI-74 scores between the two groups (P > 0.05). No significant differences were observed in the SDS and HHS between the two groups 7 days after the operation (P > 0.05). The observation group presented a significantly lower SAS score than the control group 7 days after the operation (P < 0.05). The score of the observation group 7 days after the operation was lower than that before the operation (P < 0.05). At 7 days after the operation, the observation group showed a higher score in the "social function" dimension of GQOLI-74 compared to the control group (P < 0.05), and the satisfaction of the observation group was significantly higher than that of the control group (94.67 vs. 77.65%, P < 0.05). CONCLUSIONS Ward noise management can help reduce anxiety among elderly patients after total hip arthroplasty, improve their quality of life and social function, and obtain higher satisfaction.
Collapse
Affiliation(s)
- Xiuli Chen
- Nursing Department, the First Hospital of Nanchang, Nanchang 330000, Jiangxi, China
| | - Chen Chen
- Outpatient Department of Honggutan, the First Hospital of Nanchang, Nanchang 330000, Jiangxi, China
| |
Collapse
|
5
|
Sha Z, Xu J, Li N, Li O. Regulatory Molecules of Synaptic Plasticity in Anxiety Disorder. Int J Gen Med 2023; 16:2877-2886. [PMID: 37435365 PMCID: PMC10332425 DOI: 10.2147/ijgm.s413176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
Synaptic plasticity is the capacity of synaptic transmission between neurons to be strengthened or weakened. There are many signal molecules accumulated in the presynaptic and postsynaptic membranes that can lead to the regulation of synaptic plasticity and involvement in numerous of neurological and psychiatric diseases, including anxiety disorder. However, the regulatory mechanisms of synaptic plasticity in the development of anxiety disorder have not been well summarized. This review mainly aims to discuss the biological functions and mechanisms of synaptic plasticity-related molecules in anxiety disorder, with a particular focus on the metabotropic glutamate receptors, brain-derived neurotrophic factor, hyperpolarization-activated cyclic nucleotide-gated channels, and postsynaptic density 95. The summarized functions and mechanisms of synaptic plasticity-related molecules in anxiety will provide insight into novel neuroplasticity modifications for targeted therapy for anxiety.
Collapse
Affiliation(s)
- Zhongwei Sha
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jian Xu
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Nana Li
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Ou Li
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Qi X, Tang Z, Shao X, Wang Z, Li M, Zhang X, He L, Wang J, Yu X. Ramelteon improves blood-brain barrier of focal cerebral ischemia rats to prevent post-stroke depression via upregulating occludin. Behav Brain Res 2023; 449:114472. [PMID: 37146721 DOI: 10.1016/j.bbr.2023.114472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 05/07/2023]
Abstract
Post-stroke depression (PSD) negatively affects the prognosis of post-stroke animals. Ramelteon has neuroprotection for chronic ischemia animals, but the effect and the biological mechanism of it on PSD is still unclear. This study explored the effects of ramelteon with prophylactic administration on blood-brain barrier in rats with middle cerebral artery occlusion (MCAO) and the oxygen-glucose deprivation/reperfusion (OGD/R) bEnd.3 cells and found that ramelteon pretreatment improved the depressive-like behaviors and decreased infarct area in MCAO rats. Also, this study found ramelteon pretreatment improved viability and inhibited permeability in OGD/R cells. In addition, this study found that MCP-1, TNF-α, and IL-1 levels were raised in the MCAO rats and that occludin protein and mRNA levels were decreased in the MCAO and the OGD/R models, while the Egr-1 level was up-regulated. All of these were antagonized by ramelteon pretreatment. In addition, overexpression of Egr-1 could reverse the effect of 100nM ramelteon pretreatment on FITC and occludin levels in OGD/R cells. In short, this study has demonstrated that the protective effect on PSD of ramelteon pretreatment on MCAO rats is related to the development of BBB permeability and that ramelteon regulates occludin to protect the BBB by inhibiting Egr-1.
Collapse
Affiliation(s)
- Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ziqi Tang
- Department of Psychology, New York University, New York, The United States
| | - Xian Shao
- Medical Research Center, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, China
| | - Zhaowei Wang
- Department of Neurology, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, China
| | - Mengyun Li
- Medical Research Center, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, China
| | - Xiaobing Zhang
- Department of Neurosurgery, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, China
| | - Lingyan He
- Department of Traditional Chinese Medicine, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, China.
| | - Jianli Wang
- Department of Neurosurgery, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, China.
| | - Xuebin Yu
- Department of Neurosurgery, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, China.
| |
Collapse
|
7
|
Müller SG, Jardim NS, Lutz G, Zeni G, Nogueira CW. (m-CF 3-PhSe) 2 benefits against anxiety-like phenotype associated with synaptic plasticity impairment and NMDAR-mediated neurotoxicity in young mice exposed to a lifestyle model. Chem Biol Interact 2023; 378:110486. [PMID: 37054933 DOI: 10.1016/j.cbi.2023.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Lifestyle habits including energy-dense foods and ethanol intake are associated with anxiety disorders. m-Trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] has been reported to modulate serotonergic and opioidergic systems and elicit an anxiolytic-like phenotype in animal models. This study investigated if the modulation of synaptic plasticity and NMDAR-mediated neurotoxicity contributes to the (m-CF3-PhSe)2 anxiolytic-like effect in young mice exposed to a lifestyle model. Swiss male mice (25-days old) were subjected to a lifestyle model, an energy-dense diet (20:20% lard: corn syrup) from the postnatal day (PND) 25-66 and sporadic ethanol (2 g/kg) (3 x a week, intragastrically, i.g.) from PND 45 to 60. From PND 60 to 66, mice received (m-CF3-PhSe)2 (5 mg/kg/day; i.g). The corresponding vehicle (control) groups were carried out. After, mice performed anxiety-like behavioral tests. Mice exposed only to an energy-dense diet or sporadic ethanol did not show an anxiety-like phenotype. (m-CF3-PhSe)2 abolished the anxiety-like phenotype in young mice exposed to a lifestyle model. Anxious-like mice showed increased levels of cerebral cortical NMDAR2A and 2B, NLRP3 and inflammatory markers, and decreased contents of synaptophysin, PSD95, and TRκB/BDNF/CREB signaling. (m-CF3-PhSe)2 reversed cerebral cortical neurotoxicity, the increased levels of NMDA2A and 2B, and decreased levels of synaptic plasticity-related signaling in the cerebral cortex of young mice exposed to a lifestyle model. In conclusion, the (m-CF3-PhSe)2 anxiolytic-like effect was associated with the modulation of NMDAR-mediated neurotoxicity and synaptic plasticity in the cerebral cortex of young mice exposed to the lifestyle model.
Collapse
Affiliation(s)
- Sabrina G Müller
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Natália S Jardim
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Guilherme Lutz
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Gilson Zeni
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Cristina W Nogueira
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
8
|
Alinaghipour A, Salami M, Riahi E, Ashabi G, Soheili M, Nabavizadeh F. Protective effects of nanocurcumin against stress-induced deterioration in the intestine. Stress 2022; 25:337-346. [PMID: 36369802 DOI: 10.1080/10253890.2022.2132142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The therapeutic activities of curcumin have long been investigated in some chronic and inflammatory diseases. This study was designed to investigate the protective effects of nanocurcumin on intestinal barrier function, apoptosis, and oxidative stress in rats exposed to traffic noise. Forty rats were divided into four groups: two traffic noise-exposed groups of animals that received either vehicle (NOISE) or nanocurcumin (NCUR + NOISE) and two control groups that either remained intact (CON) or received nanocurcumin (NCUR). Nanocurcumin injection (15 mg/Kg/ip) and traffic noise exposure were administered daily for two weeks. The relative protein expression of intestinal tight junctions, occludin, and ZO-1 and Bax/Bcl-2 ratio was measured to evaluate barrier integrity and apoptosis in intestinal samples, respectively. Plasma D-lactate concentration was examined as a criterion of intestinal permeability. Corticosterone, superoxide dismutase (SOD) activity, glutathione (GSH), total antioxidant capacity (TAC), and nitrite were measured in serum. The noise exposure increased Bax/Bcl-2 ratio, corticosterone, and oxidative stress in the NOISE animals. Nanocurcumin treatment improved the Bax/Bcl-2 ratio and reduced corticosterone and oxidative stress in the NCUR + NOISE animals. The expression of tight junction proteins was decreased while the concentration of D-lactate was increased in the NOISE animals. Nanocurcumin did not efficiently impact the expression of tight junction proteins and the D-lactate level in the NCUR + NOISE group. Nanocurcumin administration displayed antioxidant and anti-apoptotic roles in the noise-exposed rats, however, it did not affect the intestinal barrier integrity. We concluded that reduced apoptosis in the intestine might be related to the antioxidant activity of nanocurcumin and its modulatory effects on the HPA axis in the nanocurcumin-treated animals.
Collapse
Affiliation(s)
- Azam Alinaghipour
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmail Riahi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soheili
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|