1
|
Pillai S, Chellappan SP. ChIP on chip and ChIP-Seq assays: genome-wide analysis of transcription factor binding and histone modifications. Methods Mol Biol 2015; 1288:447-72. [PMID: 25827896 DOI: 10.1007/978-1-4939-2474-5_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deregulation of transcriptional activity of many genes has been causatively linked to human diseases including cancer. Altered patterns of gene expression in normal and cancer cells are the result of inappropriate expression of transcription factors and chromatin modifying proteins. Chromatin immunoprecipitation assay is a well-established tool for investigating the interactions between regulatory proteins and DNA at distinct stages of gene activation. ChIP coupled with DNA microarrays, known as ChIP on chip, or sequencing of DNA associated with the factors (ChIP-Seq) allow us to determine the entire spectrum of in vivo DNA binding sites for a given protein. This has been of immense value because ChIP on chip assays and ChIP-Seq experiments can provide a snapshot of the transcriptional regulatory mechanisms on a genome-wide scale. This chapter outlines the general strategies used to carry out ChIP-chip assays to study the differential recruitment of regulatory molecules based on the studies conducted in our lab as well as other published protocols; these can be easily modified to a ChIP-Seq analysis.
Collapse
Affiliation(s)
- Smitha Pillai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | | |
Collapse
|
2
|
Chohan M, Mackedenski S, Li WM, Lee CH. Human apurinic/apyrimidinic endonuclease 1 (APE1) has 3' RNA phosphatase and 3' exoribonuclease activities. J Mol Biol 2014; 427:298-311. [PMID: 25498387 DOI: 10.1016/j.jmb.2014.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is the predominant mammalian enzyme in DNA base excision repair pathway that cleaves the DNA backbone immediately 5' to abasic sites. In addition to its abasic endonuclease activity, APE1 has 3' phosphatase and 3'-5' exonuclease activities against DNA. We recently identified APE1 as an endoribonuclease that preferentially cleaves at UA, UG, and CA sites in single-stranded regions of RNAs and can regulate c-myc mRNA level and half-life in cells. APE1 can also endonucleolytically cleave abasic single-stranded RNA. Here, we show for the first time that the human APE1 has 3' RNA phosphatase and 3' exoribonuclease activities. Using three distinct RNA substrates, we show that APE1, but not RNase A, can remove the phosphoryl group from the 3' end of RNA decay products. Studies using various site-directed APE1 mutant proteins (H309N, H309S, D283N, N68A, D210N, Y171F, D308A, F266A, and D70A) suggest that the 3' RNA phosphatase activity shares the same active center as its other known nuclease activities. A number of APE1 variants previously identified in the human population, including the most common D148E variant, have greater than 80% reduction in the 3' RNA phosphatase activity. APE1 can remove a ribonucleotide from the 3' overhang of RNA decay product, but its 3'-5' exoribonuclease activity against unstructured poly(A), poly(C), and poly(U) RNAs is relatively weak. This study further underscores the significance of understanding the role of APE1 in RNA metabolism in vivo.
Collapse
Affiliation(s)
- Manbir Chohan
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada
| | - Sebastian Mackedenski
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada
| | - Wai-Ming Li
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada
| | - Chow H Lee
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada.
| |
Collapse
|
3
|
Xue X, Yin Z, Lu Y, Zhang H, Yan Y, Zhao Y, Li X, Cui Z, Yu M, Yao L, Zhou B. The joint effect of hOGG1, APE1, and ADPRT polymorphisms and cooking oil fumes on the risk of lung adenocarcinoma in Chinese non-smoking females. PLoS One 2013; 8:e71157. [PMID: 23951099 PMCID: PMC3741325 DOI: 10.1371/journal.pone.0071157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022] Open
Abstract
Background The human 8-oxoguanine DNA glycosylase 1 (hOGG1), apurinic/apyrimidinic endonuclease 1 (APE1), and adenosine diphosphate ribosyl transferase (ADPRT) genes play an important role in the DNA base excision repair pathway. Single nucleotide polymorphisms (SNPs) in critical genes are suspected to be associated with the risk of lung cancer. This study aimed to identify the association between the polymorphisms of hOGG1 Ser326Cys, APE1 Asp148Glu, and ADPRT Val762Ala, and the risk of lung adenocarcinoma in the non-smoking female population, and investigated the interaction between genetic polymorphisms and environmental exposure in lung adenocarcinoma. Methods We performed a hospital-based case-control study, including 410 lung adenocarcinoma patients and 410 cancer-free hospital control subjects who were matched for age. Each case and control was interviewed to collect information by well-trained interviewers. A total of 10 ml of venous blood was collected for genotype testing. Three polymorphisms were analyzed by the polymerase chain reaction-restriction fragment length polymorphism technique. Results We found that individuals who were homozygous for the variant hOGG1 326Cys/Cys showed a significantly increased risk of lung adenocarcinoma (OR = 1.54; 95% CI: 1.01–2.36; P = 0.045). When the combined effect of variant alleles was analyzed, we found an increased OR of 1.89 (95% CI: 1.24–2.88, P = 0.003) for lung adenocarcinoma individuals with more than one homozygous variant allele. In stratified analyses, we found that the OR for the gene-environment interaction between Ser/Cys and Cys/Cys genotypes of hOGG1 codon 326 and cooking oil fumes for the risk of lung adenocarcinoma was 1.37 (95% CI: 0.77–2.44; P = 0.279) and 2.79 (95% CI: 1.50–5.18; P = 0.001), respectively. Conclusions The hOGG1 Ser326Cys polymorphism might be associated with the risk of lung adenocarcinoma in Chinese non-smoking females. Furthermore, there is a significant gene-environment association between cooking oil fumes and hOGG1 326 Cys/Cys genotype in lung adenocarcinoma among female non-smokers.
Collapse
Affiliation(s)
- Xiaoxia Xue
- The Third Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, PR China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, PR China
| | - Yao Lu
- The Third Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, PR China
| | - Haibo Zhang
- Department of Radiotherapy, Shenyang Northern Hospital, Shenyang, PR China
| | - Ying Yan
- Department of Radiotherapy, Shenyang Northern Hospital, Shenyang, PR China
| | - Yuxia Zhao
- Department of Radiation Oncology, First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, PR China
| | - Zeshi Cui
- The Third Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, PR China
| | - Miao Yu
- The Third Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, PR China
| | - Lu Yao
- The Third Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, PR China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, PR China
- * E-mail:
| |
Collapse
|
4
|
Schoenberg DR. Mechanisms of endonuclease-mediated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:582-600. [PMID: 21957046 DOI: 10.1002/wrna.78] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endonuclease cleavage was one of the first identified mechanisms of mRNA decay but until recently it was thought to play a minor role to the better-known processes of deadenylation, decapping, and exonuclease-catalyzed decay. Most of the early examples of endonuclease decay came from studies of a particular mRNA whose turnover changed in response to hormone, cytokine, developmental, or nutritional stimuli. Only a few of these examples of endonuclease-mediated mRNA decay progressed to the point where the enzyme responsible for the initiating event was identified and studied in detail. The discovery of microRNAs and RISC-catalyzed endonuclease cleavage followed by the identification of PIN (pilT N-terminal) domains that impart endonuclease activity to a number of the proteins involved in mRNA decay has led to a resurgence of interest in endonuclease-mediated mRNA decay. PIN domains show no substrate selectivity and their involvement in a number of decay pathways highlights a recurring theme that the context in which an endonuclease function is a primary factor in determining whether any given mRNA will be targeted for decay by this or the default exonuclease-mediated decay processes.
Collapse
Affiliation(s)
- Daniel R Schoenberg
- Center for RNA Biology and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Borjigin M, Martinez B, Purohit S, de la Rosa G, Arenaz P, Stec B. Chinese hamster apurinic/apyrimidinic endonuclease (chAPE1) expressed in sf9 cells reveals that its endonuclease activity is regulated by phosphorylation. FEBS J 2010; 277:4732-40. [PMID: 20955519 DOI: 10.1111/j.1742-4658.2010.07879.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apurinic/apyrimidinic endonuclease (APE), an essential DNA repair enzyme, initiates the base excision repair pathway by creating a nick 5' to an abasic site in double-stranded DNA. Although the Chinese hamster ovary cells remain an important model for DNA repair studies, the Chinese hamster APE (chAPE1) has not been studied in vitro in respect to its kinetic characteristics. Here we report the results of a kinetic study performed on cloned and overexpressed enzyme in sf9 cells. The kinetic parameters were fully compatible with the broad range of kinetic parameters reported for the human enzyme. However, the activity measures depended on the time point of the culture. We applied inductivity coupled plasma spectrometry to measure the phosphorylation level of chAPE1. Our data showed that a higher phosphorylation of chAPE1 in the expression host was correlated to a lower endonuclease activity. The phosphorylation of a higher activity batch of chAPE1 by casein kinase II decreased the endonuclease activity, and the dephosphorylation of chAPE1 by lambda phosphatase increased the endonuclease activity. The exonuclease activity of chAPE1 was not observed in our kinetic analysis. The results suggest that noticeable divergence in reported activity levels for the human APE1 endonuclease might be caused by unaccounted phosphorylation. Our data also demonstrate that only selected kinases and phosphatases exert regulatory effects on chAPE1 endonuclease activity, suggesting further that this regulatory mechanism may function in vivo to turn on and off the function of this important enzyme in different organisms.
Collapse
Affiliation(s)
- Mandula Borjigin
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | | | | | | | | | |
Collapse
|
6
|
ChIP on chip assays: genome-wide analysis of transcription factor binding and histone modifications. Methods Mol Biol 2009; 523:341-66. [PMID: 19381927 DOI: 10.1007/978-1-59745-190-1_23] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deregulation of transcriptional activity of many genes has been causatively linked to human diseases including cancer. Altered patterns of gene expression in normal and cancer cells are the result of inappropriate expression of transcription factors and chromatin-modifying proteins. Chromatin immunoprecipitation assay is a well-established tool for investigating the interactions between regulatory proteins and DNA at distinct stages of gene activation. ChIP coupled with DNA microarrays, known as ChIP on chip, allow us to determine the entire spectrum of in vivo DNA-binding sites for a given protein. This has been of immense value because ChIP on chip assays can provide a snapshot of the transcriptional regulatory mechanisms on a genome-wide scale. This article outlines the general strategies used to carry out ChIP-chip assays to study the differential recruitment of regulatory molecules based on the studies conducted in our lab as well as other published protocols.
Collapse
|
7
|
Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G. The catalytic mechanisms of binuclear metallohydrolases. Chem Rev 2007; 106:3338-63. [PMID: 16895331 DOI: 10.1021/cr050318f] [Citation(s) in RCA: 359] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natasa Mitić
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
8
|
Yoshida A, Pommier Y, Ueda T. Endonuclease activation and chromosomal DNA fragmentation during apoptosis in leukemia cells. Int J Hematol 2006; 84:31-7. [PMID: 16867899 DOI: 10.1007/bf03342699] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Apoptotic endonuclease is a key enzyme that mediates regulated DNA fragmentation and chromatin condensation in response to apoptotic signals such as the Fas ligand, ionizing radiation, and anticancer agents. An endonuclease that is activated specifically by caspase-3 has been identified in humans and mice. The human gene for this protein has been termed DFF40 (DNA fragmentation factor, 40-kd subunit) or caspase-activated nuclease (CPAN), whereas the mouse homologue has been named caspase-activated deoxyribonuclease (CAD). Although CAD/DFF40 is known as a major apoptotic nuclease, mice lacking inhibitor of CAD (ICAD) (also known as DFF45) are viable and still show DNA fragmentation, suggesting that alternative endonucleases play an important role during apoptosis. Endonuclease G has been reported to possibly be responsible for DNA fragmentation in various cells during apoptosis. Furthermore, we also have found that apurinic/apyrimidinic endonuclease 1 (Ape1) and its N-terminal-truncated form (AN34) are involved in DNA fragmentation during apoptosis in leukemia cells. In this review, we describe the features of several endonucleases that are involved in the apoptosis of human leukemia cells. Apoptotic endonuclease may vary among different leukemia cell types.
Collapse
Affiliation(s)
- Akira Yoshida
- First Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka, Fukui, Japan.
| | | | | |
Collapse
|
9
|
Lee JH, Koh YA, Cho CK, Lee SJ, Lee YS, Bae S. Identification of a novel ionizing radiation-induced nuclease, AEN, and its functional characterization in apoptosis. Biochem Biophys Res Commun 2005; 337:39-47. [PMID: 16171785 DOI: 10.1016/j.bbrc.2005.08.264] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 08/31/2005] [Indexed: 10/25/2022]
Abstract
To investigate ionizing radiation response, we screened genes that exhibit higher expression following gamma irradiation. We report here the isolation and functional characterization of a novel ionizing radiation-induced gene, AEN. Sequence analysis of AEN revealed exonuclease domain highly similar to that of exonuclease III. The AEN protein revealed DNase activity by cleaving various DNA substrates. Subcellular distribution of AEN exhibited nuclear colocalization with apoptotic nucleases such as CAD and AIF following irradiation. Moreover AEN distribution revealed perinuclear staining pattern which could be seen with other apoptotic nucleases. Irradiation of AEN-expressing cells resulted in synergistic increase of apoptosis whereas AEN deletion mutant in exonuclease domain did not. Our data, thus, suggest that radiation-induced AEN cleaves DNA in concert with other apoptotic nucleases and thereby enhances apoptosis following ionizing irradiation.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | | | | | | | | | | |
Collapse
|