1
|
Liu J, Wu B, Wan S, Jin Y, Yang L, Wu M, Xing J, Zhang J, Chen X, Yu A. Upregulation of TRPS1 promotes proliferation, migration, and invasion in ovarian clear cell carcinoma and correlates with poor patient prognosis. J Ovarian Res 2025; 18:73. [PMID: 40197498 PMCID: PMC11974011 DOI: 10.1186/s13048-025-01603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/17/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVE Tricho-rhino-phalangeal syndrome-1 (TRPS1), an atypical GATA transcription factor, plays a critical role in diverse physiological and pathological processes and holds potential as a biomarker for diseases and targeted tumor therapies. This study explores TRPS1 expression in ovarian clear cell carcinoma (OCCC), its correlation with patient prognosis, and its involvement in OCCC pathogenesis. RESEARCH OBJECTIVES AND METHODS To investigate TRPS1 expression, we analyzed ovarian tissues from 50 OCCC patients and 25 normal tissues (from patients with uterine leiomyoma) via immunohistochemistry. Statistical methods, including Chi-square tests, Kaplan-Meier survival analysis, and Cox regression, were employed to evaluate the correlation between TRPS1 expression and clinicopathological parameters. In OCCC cell lines (TOV21G and ES-2), TRPS1 expression was quantified using qRT-PCR and Western blot. Functional studies were conducted by silencing TRPS1 in TOV21G cells with small interfering RNA and inducing overexpression in ES-2 cells using a plasmid. Cellular proliferation and migration were assessed through CCK-8, colony formation, and Transwell assays. Finally, Western blot analysis was performed to investigate the link between TRPS1 and EMT-related molecular pathways. RESULTS TRPS1 protein expression was significantly higher in OCCC tissues compared to normal tissues and was positively associated with lymph node metastasis and advanced clinical stage. High TRPS1 expression was linked to shorter overall and recurrence-free survival in OCCC patients. In vitro, TRPS1 knockdown suppressed cell proliferation, migration, and invasion, accompanied by reduced levels of invasion-promoting proteins (N-cadherin, MMP2, MMP9) and increased expression of the invasion-inhibiting protein E-cadherin. Conversely, TRPS1 overexpression promoted the expression of invasion-promoting proteins. CONCLUSIONS TRPS1 is overexpressed in OCCC and is associated with poor prognosis, serving as an independent predictor of patient outcomes. Its elevated expression enhances OCCC cell proliferation, migration, and invasion by regulating proteins involved in the epithelial-to-mesenchymal transition (EMT) pathway. These findings highlight TRPS1 as a critical player in OCCC pathogenesis and a potential biomarker and therapeutic target for disease management.
Collapse
Affiliation(s)
- Jingfang Liu
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Beier Wu
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Shihan Wan
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Yanlu Jin
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Li Yang
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Meijuan Wu
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jie Xing
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jiejie Zhang
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xin Chen
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Aijun Yu
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
- Department of Gynecological Oncology, Institute of Basic Medicine and Cancer (IBMC), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
2
|
Georgescu AC, Georgescu TA, Duca-Barbu SA, Pop LG, Toader DO, Suciu N, Cretoiu D. A Comprehensive Review of TRPS1 as a Diagnostic Immunohistochemical Marker for Primary Breast Carcinoma: Latest Insights and Diagnostic Pitfalls. Cancers (Basel) 2024; 16:3568. [PMID: 39518009 PMCID: PMC11545765 DOI: 10.3390/cancers16213568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Immunohistochemical expression of TRPS1 (trichorhinophalangeal syndrome type 1) protein is usually used by pathologists to confirm breast origin for triple-negative breast cancers (TNBC) or metastatic carcinomas of unknown primary. However, recent studies have reported TRPS1 expression in a variety of non-breast lesions. This review aims to provide a comprehensive evaluation of TRPS1 expression across various tumor types, highlighting both its diagnostic utility and potential pitfalls that may arise in clinical practice. METHODS A thorough search of the PubMed database on TRPS1 immunoexpression in tumor pathology was conducted. While the gene itself has been known for several decades, most studies regarding its use in immunohistochemistry emerged in the late 2010s. Particular emphasis was placed on case reports and cohort studies that examined the implications of TRPS1 expression in non-breast tissues, as well as variations in the results between commercially available TRPS1 clones, which may influence the staining intensity and specificity. RESULTS TRPS1 demonstrated a strong diagnostic utility in identifying primary breast lesions, particularly in TNBC cases. However, its expression in a growing number of non-breast cancers, such as lung adenocarcinoma, prostate adenocarcinoma, urothelial carcinoma, ovarian high-grade serous carcinoma, and endometrial adenocarcinoma, as well as up to 96% of synovial sarcomas with SS18-SSX fusion, emphasizes the need for caution when interpreting TRPS1 positivity and suggests a multi-marker approach in order to increase the diagnostic accuracy. CONCLUSIONS While TRPS1 remains a highly sensible immunohistochemical marker for confirming breast primary lesions, pathologists should be aware of its low specificity and incorporate complementary diagnostic methods in order to ensure accurate clinical management. Further research should focus on elucidating the molecular pathways regulating TRPS1 expression in various tumor types, which may better define its clinical utility.
Collapse
Affiliation(s)
- Antonia-Carmen Georgescu
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-C.G.); (S.-A.D.-B.)
- Department of Pathology, Clinical Hospital of Nephrology “Dr. Carol Davila”, 010731 Bucharest, Romania
| | - Tiberiu-Augustin Georgescu
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-C.G.); (S.-A.D.-B.)
- Department of Pathology, National Institute for Mother and Child Health “Alessandrescu-Rusescu”, 020395 Bucharest, Romania
| | - Simona-Alina Duca-Barbu
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-C.G.); (S.-A.D.-B.)
- Department of Pathology, Clinical Hospital of Nephrology “Dr. Carol Davila”, 010731 Bucharest, Romania
| | - Lucian Gheorghe Pop
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.G.P.); (D.O.T.); (N.S.)
- Department of Obstetrics and Gynecology, National Institute for Mother and Child Health “Alessandrescu-Rusescu”, 020395 Bucharest, Romania
| | - Daniela Oana Toader
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.G.P.); (D.O.T.); (N.S.)
- Department of Obstetrics and Gynecology, National Institute for Mother and Child Health “Alessandrescu-Rusescu”, 020395 Bucharest, Romania
| | - Nicolae Suciu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.G.P.); (D.O.T.); (N.S.)
- Department of Obstetrics and Gynecology, National Institute for Mother and Child Health “Alessandrescu-Rusescu”, 020395 Bucharest, Romania
| | - Dragos Cretoiu
- Department of Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Genetics, National Institute for Mother and Child Health “Alessandrescu-Rusescu”, 020395 Bucharest, Romania
| |
Collapse
|
3
|
Zhang Y, Hu Y, Lei L, Jiang L, Fu C, Chen M, Wu S, Duan X, Chen J, Zeng Q. UVB-induced TRPS1 regulates MITF transcription activity to promote skin pigmentation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167445. [PMID: 39074626 DOI: 10.1016/j.bbadis.2024.167445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Hyperpigmented dermatoses are characterized by increased skin pigmentation caused by genetic, environmental factors and inflammation, which lasts a long time and is difficult to treat. Ultraviolet (UV), especially ultraviolet B (UVB), is the primary external factor inducing skin pigmentation. However, the specific regulatory mechanisms are not fully understood. Through analysis of GEO datasets from four UV-exposed skin cell/tissue samples, we found that TRPS1 is the only gene differentially expressed in multiple datasets (GSE22083, GSE67098 and GSE70280) and highly positively correlated with the expression of key melanogenesis genes. Consistently, we observed that TRPS1 is highly expressed in sun-exposed skin tissues compared to non-exposed skin. Additionally, the expression of TRPS1 was also significantly upregulated after UVB irradiation in isolated skin tissues and melanocytes, while knockdown of TRPS1 expression inhibited the UVB-induced melanogenesis. Further research revealed that overexpression of TRPS1 increased melanin content and tyrosinase activity in MNT1 cells, as well as upregulated the expression levels of key melanogenesis genes (MITF, TYR, TYRP1, DCT). In contrast, inhibition of TRPS1 expression showed the opposite effect. Moreover, we found that TRPS1 can bind to the promoter region of MITF, inhibiting the expression of MITF can antagonize the melanogenesis induced by TRPS1. In conclusion, UVB-induced TRPS1 promotes melanogenesis by activating the transcriptional activity of MITF.
Collapse
Affiliation(s)
- Yushan Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yibo Hu
- Clinical Research Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Lei
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Jiang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chuhan Fu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Menglu Chen
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Songjiang Wu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolei Duan
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
Functional mechanisms of TRPS1 in disease progression and its potential role in personalized medicine. Pathol Res Pract 2022; 237:154022. [PMID: 35863130 DOI: 10.1016/j.prp.2022.154022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
The gene of transcriptional repressor GATA binding 1 (TRPS1), as an atypical GATA transcription factor, has received considerable attention in a plethora of physiological and pathological processes, and may become a promising biomarker for targeted therapies in diseases and tumors. However, there still lacks a comprehensive exploration of its functions and promising clinical applications. Herein, relevant researches published in English from 2000 to 2022 were retrieved from PubMed, Google Scholar and MEDLINE, concerning the roles of TRPS1 in organ differentiation and tumorigenesis. This systematic review predominantly focused on summarizing the structural characteristics and biological mechanisms of TRPS1, its involvement in tricho-rhino-phalangeal syndrome (TRPS), its participation in the development of multiple tissues, the recent advances of its vital features in metabolic disorders as well as malignant tumors, in order to prospect its potential applications in disease detection and cancer targeted therapy. From the clinical perspective, the deeply and thoroughly understanding of the complicated context-dependent and cell-lineage-specific mechanisms of TRPS1 would not only gain novel insights into the complex etiology of diseases, but also provide the fundamental basis for the development of therapeutic drugs targeting both TRPS1 and its critical cofactors, which would facilitate individualized treatment.
Collapse
|
5
|
Socorro M, Hoskere P, Roberts C, Lukashova L, Verdelis K, Beniash E, Napierala D. Deficiency of Mineralization-Regulating Transcription Factor Trps1 Compromises Quality of Dental Tissues and Increases Susceptibility to Dental Caries. FRONTIERS IN DENTAL MEDICINE 2022; 3. [PMID: 35573139 PMCID: PMC9106314 DOI: 10.3389/fdmed.2022.875987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dental caries is the most common chronic disease in children and adults worldwide. The complex etiology of dental caries includes environmental factors as well as host genetics, which together contribute to inter-individual variation in susceptibility. The goal of this study was to provide insights into the molecular pathology underlying increased predisposition to dental caries in trichorhinophalangeal syndrome (TRPS). This rare inherited skeletal dysplasia is caused by mutations in the TRPS1 gene coding for the TRPS1 transcription factor. Considering Trps1 expression in odontoblasts, where Trps1 supports expression of multiple mineralization-related genes, we focused on determining the consequences of odontoblast-specific Trps1 deficiency on the quality of dental tissues. We generated a conditional Trps1Col1a1 knockout mouse, in which Trps1 is deleted in differentiated odontoblasts using 2.3kbCol1a1-CreERT2 driver. Mandibular first molars of 4wk old male and female mice were analyzed by micro-computed tomography (μCT) and histology. Mechanical properties of dentin and enamel were analyzed by Vickers microhardness test. The susceptibility to acid demineralization was compared between WT and Trps1Col1a1cKO molars using an ex vivo artificial caries procedure. μCT analyses demonstrated that odontoblast-specific deletion of Trps1 results in decreased dentin volume in male and female mice, while no significant differences were detected in dentin mineral density. However, histology revealed a wider predentin layer and the presence of globular dentin, which are indicative of disturbed mineralization. The secondary effect on enamel was also detected, with both dentin and enamel of Trps1Col1a1cKO mice being more susceptible to demineralization than WT tissues. The quality of dental tissues was particularly impaired in molar pits, which are sites highly susceptible to dental caries in human teeth. Interestingly, Trps1Col1a1cKO males demonstrated a stronger phenotype than females, which calls for attention to genetically-driven sex differences in predisposition to dental caries. In conclusion, the analyses of Trps1Col1a1cKO mice suggest that compromised quality of dental tissues contributes to the high prevalence of dental caries in TRPS patients. Furthermore, our results suggest that TRPS patients will benefit particularly from improved dental caries prevention strategies tailored for individuals genetically predisposed due to developmental defects in tooth mineralization.
Collapse
Affiliation(s)
- Mairobys Socorro
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
| | - Priyanka Hoskere
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
| | - Catherine Roberts
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
| | - Lyudmila Lukashova
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
| | - Kostas Verdelis
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- Department of Restorative Dentistry/Comprehensive Care, University of Pittsburgh, School of Dental Medicine, Pittsburgh, PA, United States
- Department of Endodontics and Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, PA, United States
| | - Elia Beniash
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dobrawa Napierala
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Correspondence: Dobrawa Napierala,
| |
Collapse
|
6
|
Rangel R, Lee SC, Hon-Kim Ban K, Guzman-Rojas L, Mann MB, Newberg JY, Kodama T, McNoe LA, Selvanesan L, Ward JM, Rust AG, Chin KY, Black MA, Jenkins NA, Copeland NG. Transposon mutagenesis identifies genes that cooperate with mutant Pten in breast cancer progression. Proc Natl Acad Sci U S A 2016; 113:E7749-E7758. [PMID: 27849608 PMCID: PMC5137755 DOI: 10.1073/pnas.1613859113] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has the worst prognosis of any breast cancer subtype. To better understand the genetic forces driving TNBC, we performed a transposon mutagenesis screen in a phosphatase and tensin homolog (Pten) mutant mice and identified 12 candidate trunk drivers and a much larger number of progression genes. Validation studies identified eight TNBC tumor suppressor genes, including the GATA-like transcriptional repressor TRPS1 Down-regulation of TRPS1 in TNBC cells promoted epithelial-to-mesenchymal transition (EMT) by deregulating multiple EMT pathway genes, in addition to increasing the expression of SERPINE1 and SERPINB2 and the subsequent migration, invasion, and metastasis of tumor cells. Transposon mutagenesis has thus provided a better understanding of the genetic forces driving TNBC and discovered genes with potential clinical importance in TNBC.
Collapse
Affiliation(s)
- Roberto Rangel
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030
| | - Song-Choon Lee
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673
| | - Kenneth Hon-Kim Ban
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673
- Deparment of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138673
| | - Liliana Guzman-Rojas
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030
| | - Michael B Mann
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030
| | - Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030
| | - Takahiro Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030
| | - Leslie A McNoe
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | | | - Jerrold M Ward
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673
| | - Alistair G Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, United Kingdom
| | - Kuan-Yew Chin
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030;
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673
| |
Collapse
|
7
|
Huang JZ, Chen M, Zeng M, Xu SH, Zou FY, Chen D, Yan GR. Down-regulation of TRPS1 stimulates epithelial-mesenchymal transition and metastasis through repression ofFOXA1. J Pathol 2016; 239:186-96. [PMID: 26969828 DOI: 10.1002/path.4716] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 02/02/2016] [Accepted: 02/20/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Jin-Zhou Huang
- Institutes of Life and Health Engineering, Jinan University; and Biomedicine Research Centre; Third Affiliated Hospital of Guangzhou Medical University; People's Republic of China
| | - Min Chen
- Institutes of Life and Health Engineering, Jinan University; and Biomedicine Research Centre; Third Affiliated Hospital of Guangzhou Medical University; People's Republic of China
| | - Ming Zeng
- Institutes of Life and Health Engineering, Jinan University; and Biomedicine Research Centre; Third Affiliated Hospital of Guangzhou Medical University; People's Republic of China
| | - Song-Hui Xu
- Institutes of Life and Health Engineering, Jinan University; and Biomedicine Research Centre; Third Affiliated Hospital of Guangzhou Medical University; People's Republic of China
| | - Fei-Yan Zou
- Institutes of Life and Health Engineering, Jinan University; and Biomedicine Research Centre; Third Affiliated Hospital of Guangzhou Medical University; People's Republic of China
| | - De Chen
- Biomedicine Research Centre and Department of Surgery; Third Affiliated Hospital of Guangzhou Medical University; People's Republic of China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes; Guangzhou People's Republic of China
| | - Guang-Rong Yan
- Institutes of Life and Health Engineering, Jinan University; and Biomedicine Research Centre; Third Affiliated Hospital of Guangzhou Medical University; People's Republic of China
- Biomedicine Research Centre and Department of Surgery; Third Affiliated Hospital of Guangzhou Medical University; People's Republic of China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes; Guangzhou People's Republic of China
| |
Collapse
|
8
|
Wu L, Wang Y, Liu Y, Yu S, Xie H, Shi X, Qin S, Ma F, Tan TZ, Thiery JP, Chen L. A central role for TRPS1 in the control of cell cycle and cancer development. Oncotarget 2015; 5:7677-90. [PMID: 25277197 PMCID: PMC4202153 DOI: 10.18632/oncotarget.2291] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The eukaryotic cell cycle is controlled by a complex regulatory network, which is still poorly understood. Here we demonstrate that TRPS1, an atypical GATA factor, modulates cell proliferation and controls cell cycle progression. Silencing TRPS1 had a differential effect on the expression of nine key cell cycle-related genes. Eight of these genes are known to be involved in the regulation of the G2 phase and the G2/M transition of the cell cycle. Using cell synchronization studies, we confirmed that TRPS1 plays an important role in the control of cells in these phases of the cell cycle. We also show that silencing TRPS1 controls the expression of 53BP1, but not TP53. TRPS1 silencing also decreases the expression of two histone deacetylases, HDAC2 and HDAC4, as well as the overall HDAC activity in the cells, and leads to the subsequent increase in the acetylation of histone4 K16 but not of histone3 K9 or K18. Finally, we demonstrate that TRPS1 expression is elevated in luminal breast cancer cells and luminal breast cancer tissues as compared with other breast cancer subtypes. Overall, our study proposes that TRPS1 acts as a central hub in the control of cell cycle and proliferation during cancer development.
Collapse
Affiliation(s)
- Lele Wu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, PR China. Contributed equally to this work
| | - Yuzhi Wang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, PR China. Contributed equally to this work
| | - Yan Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, PR China
| | - Shiyi Yu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, PR China
| | - Hao Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, PR China
| | - Xingjuan Shi
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, PR China
| | - Sheng Qin
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Tuan Zea Tan
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, Singapore
| | - Jean Paul Thiery
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, Singapore. Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore
| | - Liming Chen
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, PR China
| |
Collapse
|
9
|
Increased expression of TRPS1 affects tumor progression and correlates with patients' prognosis of colon cancer. BIOMED RESEARCH INTERNATIONAL 2013; 2013:454085. [PMID: 23762846 PMCID: PMC3677607 DOI: 10.1155/2013/454085] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/23/2022]
Abstract
Aim. To detect the expression pattern of tricho-rhino-phalangeal syndrome-1 (TRPS1) in human colon cancer and to analyze its correlation with prognosis of patients with this disease. Methods. The expressions of TRPS1 in human colon cancer and its corresponding noncancerous colon tissues were detected at both mRNA and protein levels. Results. The mRNA and protein expression levels of TRPS1 were both significantly higher in colon cancer than in corresponding noncancerous colon tissues (both P < 0.001). The protein level of TRPS1 in colon cancer tissues was significantly correlated with the mRNA level (r = 0.9, P < 0.001). Additionally, immunohistochemistry analysis also found increased TRPS1 expression in 63.0% (63/100) of colon cancer tissues. High TRPS1 expression was significantly associated with positive lymph node metastasis (P = 0.006) and higher pathological stage (P = 0.008) of patients with colon cancer. Multivariate Cox regression analysis further suggested that the increased expression of TRPS1 was an independent poor prognostic factor for this disease. Conclusion. Our data offer the convincing evidence for the first time that the increased expression of TRPS1 may be involved in the pathogenesis and progression of colon cancer. TRPS1 might be a potential marker to predict the prognosis in colon cancer.
Collapse
|
10
|
Fantauzzo KA, Christiano AM. Trps1 activates a network of secreted Wnt inhibitors and transcription factors crucial to vibrissa follicle morphogenesis. Development 2011; 139:203-14. [PMID: 22115758 DOI: 10.1242/dev.069971] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in TRPS1 cause trichorhinophalangeal syndrome types I and III, which are characterized by sparse scalp hair in addition to craniofacial and skeletal abnormalities. Trps1 is a vertebrate transcription factor that contains nine zinc-finger domains, including a GATA-type zinc finger through which it binds DNA. Mice in which the GATA domain of Trps1 has been deleted (Trps1(Δgt/Δgt)) have a reduced number of pelage follicles and lack vibrissae follicles postnatally. To identify the transcriptional targets of Trps1 in the developing vibrissa follicle, we performed microarray hybridization analysis, comparing expression patterns in the whisker pads of wild-type versus Trps1(Δgt/Δgt) embryos. We identified a number of transcription factors and Wnt inhibitors among transcripts downregulated in the mutant embryos and several extracellular matrix proteins that were upregulated in the mutant samples, and demonstrated that target gene expression levels were altered in vivo in Trps1(Δgt/Δgt) vibrissae. Unexpectedly, we discovered that Trps1 can directly bind the promoters of its target genes to activate transcription, expanding upon its established role as a transcriptional repressor. Our findings identify Trps1 as a novel regulator of the Wnt signaling pathway and of early hair follicle progenitors in the developing vibrissa follicle.
Collapse
|
11
|
Abstract
GATA transcription factor family members have been found to play a critical role in the differentiation of many tissue types. For example, GATA-3 has been found to be highly correlated with estrogen receptor α (ER) expression and is emerging as one of the "master regulators" in breast ductal epithelial cell differentiation. Recently, we discovered another GATA family member highly prevalent in breast cancer called the trichorhinophalangeal syndrome-1 gene (TRPS-1). Using a quantitative immunohistochemistry (qIHC) approach, we found that TRPS-1 was significantly correlated with ER, PR, GATA-3, as well as HER2 expression. However, TRPS-1 was also found to be expressed in a high proportion of ER(-) ductal epithelial breast cancers (BCs), indicating that it may act as a ductal epithelial cell-specific transcription factor regulating cell fate at some point in the epithelial cell differentiation pathway. In keeping with this hypothesis, we found that TRPS-1 protein expression in BC above a certain threshold using qIHC correlated with markedly improved overall survival. Cox proportional hazards analysis found that both TRPS-1 and ER expression above critical threshold equally predicted for improved survival. Thus, TRPS-1 may be a powerful new positive prognostic marker in BC, and further IHC studies, as well as examination of its molecular function in ductal epithelial cell differentiation in the breast, are warranted. In this regard, data on the role of TRPS-1 in the differentiation of cells from mesenchymal precursors in other tissues, such as kidney metanephric mesenchymal cells, columnar chondrocytes, and osteoblasts, in mouse models may be useful. Indeed, these studies have found that TRPS-1 is a critical regulator of mesenchymal-to-epithelial cell transition. In the mammary gland, the restricted expression of TRPS-1 in human, mouse, and rat ductal epithelial cells suggests that it may also play a similar role during ductal luminal progenitor/stem cell differentiation. We present a model of TRPS-1 action in which it may act upstream of GATA-3 and ER on an earlier ductal epithelial progenitor cell or mammary stem cell during mammary gland development and also helps prevent reversion of ER(+) BC cells back into mesenchymal-like cells. This model predicts that BCs with low or no TRPS-1 expression may inherently be much less differentiated and more aggressive tumors with less favorable prognosis.
Collapse
|
12
|
Molecular Validation of PACE4 as a Target in Prostate Cancer. Transl Oncol 2011; 4:157-72. [PMID: 21633671 DOI: 10.1593/tlo.10295] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/02/2011] [Accepted: 02/14/2011] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer remains the single most prevalent cancer in men. Standard therapies are still limited and include androgen ablation that initially causes tumor regression. However, tumor cells eventually relapse and develop into a hormone-refractory prostate cancer. One of the current challenges in this disease is to define new therapeutic targets, which have been virtually unchanged in the past 30 years. Recent studies have suggested that the family of enzymes known as the proprotein convertases (PCs) is involved in various types of cancers and their progression. The present study examined PC expression in prostate cancer and validates one PC, namely PACE4, as a target. The evidence includes the observed high expression of PACE4 in all different clinical stages of human prostate tumor tissues. Gene silencing studies targeting PACE4 in the DU145 prostate cancer cell line produced cells (cell line 4-2) with slower proliferation rates, reduced clonogenic activity, and inability to grow as xenografts in nude mice. Gene expression and proteomic profiling of the 4-2 cell line reveals an increased expression of known cancer-related genes (e.g., GJA1, CD44, IGFBP6) that are downregulated in prostate cancer. Similarly, cancer genes whose expression is decreased in the 4-2 cell line were upregulated in prostate cancer (e.g., MUC1, IL6). The direct role of PACE4 in prostate cancer is most likely through the upregulated processing of growth factors or through the aberrant processing of growth factors leading to sustained cancer progression, suggesting that PACE4 holds a central role in prostate cancer.
Collapse
|
13
|
Chen JQ, Litton J, Xiao L, Zhang HZ, Warneke CL, Wu Y, Shen X, Wu S, Sahin A, Katz R, Bondy M, Hortobagyi G, Berinstein NL, Murray JL, Radvanyi L. Quantitative immunohistochemical analysis and prognostic significance of TRPS-1, a new GATA transcription factor family member, in breast cancer. Discov Oncol 2010; 1:21-33. [PMID: 21761348 DOI: 10.1007/s12672-010-0008-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/15/2009] [Indexed: 11/25/2022] Open
Abstract
The trichorhinophalangeal syndrome 1 (TRPS-1) gene is a novel GATA transcription factor family member. Previously, using a gene expression profiling and immunohistochemistry (IHC) screen, we identified TRPS-1 as a highly prevalent gene in breast cancer (BC), expressed in >90% of estrogen receptor alpha (ERα)(+) and ERα(-) BC subtypes. TRPS-1 was also shown to be expressed in prostate cancer where it was shown to play a proapoptotic function during androgen withdrawal possibly through regulating antioxidant metabolism. The role of TRPS-1 and its prognostic significance in hormone-dependent and hormone-independent BC however is not known. In this study, we developed a new quantitative IHC (qIHC) method to further study TRPS-1 as a marker and possible prognostic indicator in BC. By using this method, a quantitative parameter for TRPS-1 expression called a quick score (QS) was derived from the measured labeling index and mean optical density after IHC and applied to a set of 152 stage II/III BC patients from 1993 to 2006 who did not receive preoperative chemotherapy. Associations between QS and tumor characteristics were evaluated using the Kruskal-Wallis test. A wide range of TRPS-1 QS was found among the sample set with higher TRPS-1 QS significantly associated with tumor ERα (p = 0.023 for QS and p = 0.028 for Allred score), progesterone receptor (p = 0.009), and GATA-3 (p < 0.0001). TRPS-1 QS was also positively associated with HER2 status (p = 0.026). Further analysis of different ductal structures in ten BC cases revealed that TRPS-1 expression was expressed at low levels in the remaining normal ducts and in areas of usual ductal hyperplasia but showed marked increase in expression in ductal carcinoma in situ and invasive carcinoma lesions in the tissue. An analysis of TRPS-1 expression in association with overall survival in the 152 stage II/III sample set also revealed that TRPS-1 QS (≥4.0) was significantly associated with improved survival (p = 0.0165). Patients with TRPS-1 QS <4 had a hazard ratio of 2 (p = 0.019) after univariate Cox proportional hazards analysis. In summary, this new qIHC approach was found to reveal critical differences in TRPS-1 expression in primary BC samples and found that it is a promising prognostic marker that should be further evaluated as a possible tumor suppressor gene facilitating improved survival in different subtypes of BC.
Collapse
MESH Headings
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Breast Neoplasms, Male/genetics
- Breast Neoplasms, Male/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/genetics
- Female
- Gene Expression Profiling/methods
- Humans
- Immunohistochemistry/methods
- Kaplan-Meier Estimate
- Male
- Middle Aged
- Neoplasm Staging
- Prognosis
- Proportional Hazards Models
- Repressor Proteins
- Transcription Factors/analysis
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Jie Qing Chen
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Piscopo DM, Johansen EB, Derynck R. Identification of the GATA factor TRPS1 as a repressor of the osteocalcin promoter. J Biol Chem 2009; 284:31690-703. [PMID: 19759027 DOI: 10.1074/jbc.m109.052316] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A proteomic analysis of proteins bound to the osteocalcin OSE2 sequence of the mouse osteocalcin promoter identified TRPS1 as a regulator of osteocalcin transcription. Mutations in the TRPS1 gene are responsible for human tricho-rhino-phalangeal syndrome, which is characterized by skeletal and craniofacial abnormalities. TRPS1 has been shown to bind regulatory promoter sequences containing GATA consensus binding sites and to repress transcription of genes involved in chondrocyte differentiation. Here we show that TRPS1 can directly bind the osteocalcin promoter in the presence or absence of Runx2. TRPS1 binds through a GATA binding sequence in the proximal promoter of the osteocalcin gene. The GATA binding site is conserved in mice, humans, and rats, although its location and orientation are not. Mutation of the mouse or human GATA binding sequence abrogates binding of TRPS1 to the osteocalcin promoter. We show that TRPS1 is expressed in osteosarcoma cells and upon induction of osteoblast differentiation in primary mouse bone marrow stromal cells and that TRPS1 regulates the expression of osteocalcin in both cell types. The expression of TRPS1 modulates mineralized bone matrix formation in differentiating osteoblast cells. These data suggest a role for TRPS1 in osteoblast differentiation, in addition to its previously described role in chondrogenesis.
Collapse
Affiliation(s)
- Denise M Piscopo
- Department of Cell and Tissue Biology, Programs in Cell Biology and Developmental Biology, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
15
|
Shadley JD, Divakaran K, Munson K, Hines RN, Douglas K, McCarver DG. Identification and functional analysis of a novel human CYP2E1 far upstream enhancer. Mol Pharmacol 2007; 71:1630-9. [PMID: 17353354 DOI: 10.1124/mol.106.031302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Both transcriptional and post-transcriptional CYP2E1 regulatory mechanisms are known, resulting in 20-fold or greater variation in CYP2E1 expression. To evaluate functional regulatory elements controlling transcription, CYP2E1 promoter constructs were used to make adenovirus vectors containing CYP2E1 promoter-driven luciferase reporters for analyses in both primary human hepatocytes and HepG2 cells. A 1.2-kilobase pair portion of the CYP2E1 promoter was associated with 5- to 10-fold greater luciferase activity. This upstream region contained five direct repeats of 59 base pairs (bp) that increased thymidine kinase-driven luciferase reporter activity in HepG2 cells more than 5-fold, regardless of orientation. Electrophoretic mobility shift assays (EMSAs) identified sequence-specific nuclear protein binding to the 59-bp repeats that was dependent on a 17-bp sequence containing a canonical GATA binding site (WGATAR). Competitive and supershift EMSA identified the participation of GATA4, another GATA family member or GATA-like factor, and a third factor unrelated to the GATA family. Involvement of the tricho-rhino-phalangeal syndrome-1 factor, which also binds a GATA sequence, was eliminated. Rather, competitive EMSA using known binding sequences for the orphan nuclear receptors, steroidogenic factor-1 (or NR5A1), and fetoprotein transcription factor (or NR5A2) implicated an NR5A member in binding a sequence overlapping the canonical GATA. Chromatin immunoprecipitation assay demonstrated in vivo binding of NR5A2 to the enhancer sequence in human hepatocytes. The enhancer sequence is conserved within the human population but seems species-specific. The identification of this novel enhancer and its putative mechanism adds to the complexities of human CYP2E1 regulation.
Collapse
Affiliation(s)
- Jeff D Shadley
- Clinical Pharmacology, Pharmacogenetics & Teratology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-4801, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Chang GTG, Gamble SC, Jhamai M, Wait R, Bevan CL, Brinkmann AO. Proteomic analysis of proteins regulated by TRPS1 transcription factor in DU145 prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:575-82. [PMID: 17467349 DOI: 10.1016/j.bbapap.2007.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to identify proteins differentially regulated by TRPS1 in human prostate cancer cells in order to better understand the role of TRPS1 in prostate cancer development. The proteomes of androgen-independent DU145 prostate cancer cells, that do not express TRPS1 and of genetically engineered DU145 cells that stable and inducible express recombinant TRPS1 protein, were compared. Using two-dimensional electrophoresis followed by mass spectrometric analysis, 13 proteins that were differentially expressed between these two cell lines were identified. These proteins represent a dominant reduction of expression of antioxidant proteins, including superoxide dismutase, protein disulfide isomerase A3 precursor, endoplasmin precursor and annexin A2. Furthermore, regulation was observed for mitochondrion-associated proteins, glycolytic enzymes, a cytoskeleton-associated protein, a nuclear protein and proteins involved in apoptosis. Our data indicate that overexpression of TRPS1 protein is correlated with reduced protein expression of certain antioxidants. This suggests a possible involvement of TRPS1 in oxidative stress, and possibly in apoptosis in androgen-independent DU145 prostate cancer cells.
Collapse
Affiliation(s)
- Glenn T G Chang
- Department of Reproduction and Development, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Masuda K, Werner T, Maheshwari S, Frisch M, Oh S, Petrovics G, May K, Srikantan V, Srivastava S, Dobi A. Androgen receptor binding sites identified by a GREF_GATA model. J Mol Biol 2005; 353:763-71. [PMID: 16213525 DOI: 10.1016/j.jmb.2005.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 07/31/2005] [Accepted: 09/07/2005] [Indexed: 01/01/2023]
Abstract
Changes in transcriptional regulation can be permissive for tumor progression by allowing for selective growth advantage of tumor cells. Tumor suppressors can effectively inhibit this process. The PMEPA1 gene, a potent inhibitor of prostate cancer cell growth is an androgen-regulated gene. We addressed the question of whether or not androgen receptor can directly bind to specific PMEPA1 promoter upstream sequences. To test this hypothesis we extended in silico prediction of androgen receptor binding sites by a modeling approach and verified the actual binding by in vivo chromatin immunoprecipitation assay. Promoter upstream sequences of highly androgen-inducible genes were examined from microarray data of prostate cancer cells for transcription factor binding sites (TFBSs). Results were analyzed to formulate a model for the description of specific androgen receptor binding site context in these sequences. In silico analysis and subsequent experimental verification of the selected sequences suggested that a model that combined a GREF and a GATA TFBS was sufficient for predicting a class of functional androgen receptor binding sites. The GREF matrix family represents androgen receptor, glucocorticoid receptor and progesterone receptor binding sites and the GATA matrix family represents GATA binding protein 1-6 binding sites. We assessed the regulatory sequences of the PMEPA1 gene by comparing our model-based GREF_GATA predictions to weight matrix-based predictions. Androgen receptor binding to predicted promoter upstream sequences of the PMEPA1 gene was confirmed by chromatin immunoprecipitation assay. Our results suggested that androgen receptor binding to cognate elements was consistent with the GREF_GATA model. In contrast, using only single GREF weight matrices resulted in additional matches, apparently false positives. Our findings indicate that complex models based on datasets selected by biological function can be superior predictors as they recognize TFBSs in their functional context.
Collapse
Affiliation(s)
- Katsuaki Masuda
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University, Rockville, MD 20852, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|